Factors Influencing the Acceptance of AI in Mobile Health Apps in Malaysia
Abstract
In today’s fast-paced world, maintaining health and personal wellness has become a top priority. Artificial intelligence (AI) has emerged as a powerful tool in this effort, offering innovative solutions through mobile health applications. These applications use AI-driven algorithms to analyze user data, including sleep patterns, food intake, daily activity levels, diet preferences, stress indicators, and meditation, to provide personalized recommendations and insights. Mobile health applications have the potential to improve healthcare systems by enhancing health and disease management, communication, efficiency, treatment adherence, reducing costs, and increasing access to health interventions. This paper aims to provide a better understanding of the use of artificial intelligence in healthcare tools by examining the factors influencing the intention to use mobile health applications in Malaysia. It will discuss the extended UTAUT constructs and the concept of personal health characteristics, such as performance expectancy, effort expectancy, social influence, facilitating conditions, and health consciousness.
Downloads
References
Afrah, I. A., & Kose, U. (2020). mHealth: An Artificial Intelligence Oriented Mobile Application for Personal Healthcare Support. Journal of Multidisciplinary Developments, 5(1). Retrieved from http://www.jomude.com/index.php/jomude/article/view/86
Ahadzadeh, A. S., Wu, S. L., Ong, F. S., & Deng, R. (2021). The Mediating Influence of the Unified Theory of Acceptance and Use of Technology on the Relationship Between Internal Health Locus of Control and Mobile Health Adoption: Cross-sectional Study. Journal of Medical Internet Research, 23(12). doi:https://doi.org/10.2196/28086 DOI: https://doi.org/10.2196/28086
Alaiad, A., Alsharo, M., & Alnsour, Y. (2019). The Determinants of M-Health Adoption in Developing Countries: An Empirical Investigation. Applied Clinical Informatics, 10(5), 820-840. doi:https://doi.org/10.1055/s-0039-1697906 DOI: https://doi.org/10.1055/s-0039-1697906
Alam, M. Z., Hoque, M. R., Hu, W., & Barua, Z. (2020). Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. International Journal of Information Management. DOI: https://doi.org/10.1016/j.ijinfomgt.2019.04.016
Alejandro, G. D., Fabelo, H., Almeida, A. J., Zamorano, G. Z., Fernandez, M. C., Ruano, M. D., . . . Consortium, W. (2023). Quality, Usability, and Effectiveness of mHealth Apps and the role of Artificial Intelligence: Current Scenario and Challenges. Journal of Medical Internet Research, 25. doi:https://doi.org/10.2196/44030 DOI: https://doi.org/10.2196/44030
Alkhalifah, T. (2022). A Structural Equation Modelling of Governing Factors Influencing Patient Acceptance of Mobile Health in Saudi Arabia: A Modified UTAUT Model. International Journal of E-Services and Mobile Applications, 14(1). DOI: https://doi.org/10.4018/IJESMA.295963
Bao, H., & Lee, E. W. (2023). Examining Theoretical Frameworks and Antecedents of Health Apps and Wearable Use. Health Communication. doi:https://doi.org/10.1080/10410236.2023.2283655 DOI: https://doi.org/10.1080/10410236.2023.2283655
Becker, D. (2018). Possibilities to Improve Online Mental Health Treatment: Recommendations for Future Research and Developments. Future of Information and Communication Conference (FICC). Singapore. doi:https://www.researchgate.net/publication/324277093 DOI: https://doi.org/10.1007/978-3-030-03402-3_8
Binyamin, S., & Zafar, B. A. (2021). Proposing a mobile apps acceptance model for users in the health area: A systematic literature review and meta-analysis. Health Informatics Journal. doi:DOI: 10.1177/1460458220976737 DOI: https://doi.org/10.1177/1460458220976737
Castro, P. C., Lorenzi, L. J., Belo, L. F., Frohlich, D. M., Dourado, V. Z., & Gomes, G. A. (2021). Factors related to the adoption and adherence of physical activity mobile applications by older people. Health informatics. doi:https://doi.org/10.1136/bmjopen-2021-052414 DOI: https://doi.org/10.1136/bmjopen-2021-052414
Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. PMC Healthcare Journal, 6(2), 94-98. doi:https://doi.org/10.7861%2Ffuturehosp.6-2-94 DOI: https://doi.org/10.7861/futurehosp.6-2-94
Delove, M. A., Scott, R. E., & Mars, M. (2020). Review of patients' perspectives of m-health adoption factors in the developing world. Development of a proposed conceptual framework. Informatics in Medicine Unlocked, 21. doi:https://doi.org/10.1016/j.imu.2020.100460 DOI: https://doi.org/10.1016/j.imu.2020.100460
Garcia, A. D., Fabelo, H., Almeida, A. R., Zamorano, G. Z., Fernandez, M. C., Ruano, M. A., . . . Wagner, A. M. (2023). Quality, Usability, and Effectiveness of mHealth Apps and the Role of Artificial Intelligence: Current Scenario and Challenges. Journal of Medical Internet Research. doi:https://doi.org/10.2196/44030
Gu, D., Khan, S., Khan, I. U., Khan, S. U., Xie, Y., Li, X., & Zhang, G. (2021). Assessing the adoption of e-health technology in a developing country: an extension of the UTAUT model. SAGE open. DOI: https://doi.org/10.1177/21582440211027565
Halevi, G., Moed, H., & Ilan, J. B. (2017). Sustainability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation- Review of the literature. Journal of Informetrics, 11(3). doi:https://doi.org/10.1016/j.joi.2017.06.005 DOI: https://doi.org/10.1016/j.joi.2017.06.005
Handayani, P. W., Gelshirani, N. B., Azzahro, F., Pinem, A. A., & Hidayanto, A. N. (2020). The influence of argument quality, source credibility, and health consciousness on satisfaction, use intention, and loyalty on mobile health application use. Informatics in Medicine Unlocked. DOI: https://doi.org/10.1016/j.imu.2020.100429
Haron, S. A., Koris, R., Orhun, N. M., Nur, A. M., Aljunid, S. M., & Shafie, A. A. (2024). Economic Burden of Healthcare Utilisation by Older Persons Living in the Community in Malaysia. Journal of Health Policy & Outcomes Research, 1. doi:https://www.jhpor.com/home/Article/2356#
Hernandez, M. G., Adrian, S. W., Ferre, X., & Mora, E. V. (2022). Implicit, Explicit, and Structural Barriers and Facilitators for Information and Communication Technology Access in Older Adults. Frontiers: Humman-Media Interaction, 3. doi:https://doi.org/10.3389/fpsyg.2022.874025
Intelligence, M. (2024). Malaysia Healthcare Aging Population International Trade Market Intelligence. Retrieved from Market Intelligence: https://www.trade.gov/market-intelligence/malaysia-healthcare-aging-population
Jaakkola, E. (2020). Designing conceptual articles: Four approaches. Academy of Marketing Science Review, 10(3). doi:http://dx.doi.org/10.1007/s13162-020-00161-0 DOI: https://doi.org/10.1007/s13162-020-00161-0
Kashive, N., Powale, L., & Kashive, K. (2020). Understanding user perception toward artificial intelligence (AI) enables e-learning. International Journal of Information and Learning Technology. doi:http://dx.doi.org/10.1108/IJILT-05-2020-0090 DOI: https://doi.org/10.1108/IJILT-05-2020-0090
Khan, N., Qureshi, M. I., Mustapha, I., Irum, S., & Arshad, R. N. (2020). A Systematic Literature Review Paper on Online Medical Mobile Application in Malaysia. International Journal of Online and Biomedical Engineering. doi:https://doi.org/10.3991/ijoe.v16i01.12263 DOI: https://doi.org/10.3991/ijoe.v16i01.12263
Kong, D., Fu, J., Yan, H., Siqi, L., & Yu, L. (2022). The Application and Prospect of Mobile Health (mHealth) in Health Service for Older People Living Alone in Community: A Narrative Review. Iran Journal Public Health. doi:https://doi.org/10.18502/ijph.v51i4.9233 DOI: https://doi.org/10.18502/ijph.v51i4.9233
Koris, R., Haron, S. A., Orhun, N. M., Nur, A. M., Aljunid, S. M., & Shafie, A. A. (2024). Economic Burden of Healthcare Utilisation by Older Persons Living in the Community in Malaysia. Journal of Health Policy and Outcomes Research. doi:DOI:10.7365/JHPOR.2024.1.1 DOI: https://doi.org/10.7365/JHPOR.2024.1.1
Latif, S., Rana, R., Qadir, J., Younis, S., Ali, A., & Imran, M. A. (2017). Mobile Health in the Developing World: Review of Literature and Lessons from A Case Study. Institute of Electrical and Electronics Engineers Inc., 5. doi:https://doi.org/10.1109/ACCESS.2017.2710800 DOI: https://doi.org/10.1109/ACCESS.2017.2710800
Lim, H. M., Dunn, A. G., Firdaus Ooi, S. M., Teo, C. H., Abdullah, A., Woo, J. W., & Ng, C. J. (2021). mHealth adoption among primary care physicians in Malaysia and its associated factors: a cross-sectional study. Family Practice. doi:https://doi.org/10.1093/fampra/cmaa103 DOI: https://doi.org/10.1093/fampra/cmaa103
Liu, C. (2017). International Competitiveness and the Fourth Industrial Revolution. Entrepreneurial Business and Economics Review. doi:https://doi.org/10.15678/EBER.2017.050405 DOI: https://doi.org/10.15678/EBER.2017.050405
Maher, M., Khan, I., & Prikshat, V. (2023). Monetization of digital health data through a GDPR-compliant and blockchain-enabled digital health data marketplace: A proposal to enhance patient's engagement with health data repositories. International Journal of Information Management Data Insight. doi:https://doi.org/10.1016/j.jjimei.2023.100159 DOI: https://doi.org/10.1016/j.jjimei.2023.100159
Meigasari, D. A., Handayani, P. W., Ayuningtyas, D., & Hidayanto, A. N. (2020). Do electronic personal health records (E-PHR) influence people behavior to manage their health? 2020 International Conference on Information Management and Technology (ICIMTech). DOI: https://doi.org/10.1109/ICIMTech50083.2020.9211293
Park, Y.-T., Lee, M.-J., & Kim, S. M. (2024). Quality of Care in Hospitals and the Use of Mobile-Based Personal Health Record Applications: An Exploratory Study Using National Hospital Evaluation Data. Healthcare. doi:https://doi.org/10.3390/healthcare12111064 DOI: https://doi.org/10.3390/healthcare12111064
Ramely, A., Abd. Talib, M. F., Rashid Radha, J. R., & Mokhtar, M. F. (2022). Green Event Practices: Understanding the adaptation of event organizers through a systematic review. Malaysian Journal of Sustainable Environment. doi:https://doi.org/10.24191/myse.v9i1.17295 DOI: https://doi.org/10.24191/myse.v9i1.17295
Saidon, J., Musa, R., Hashim, H., Atory, N. A., Sohid, F. M., Yusof, N. M., & Omar, S. S. (2023). Devices Features and/or Personality Traits? Disentangling the Determinants of Smartphone Nomophobia and Pathology among Urban Millennials. Information Management and Business Review. DOI: https://doi.org/10.22610/imbr.v15i4(SI)I.3619
Samadbeik, M., Garavand, A., Kordi, M., Abtin, A., & Asadi, H. (2020). Factors Affecting the Acceptance of Mobile Health by Medical Sciences Students: A Cross-sectional Study. International Journal of Nursing and Medical Research, 25(6). doi:https://doi.org/10.4103/ijnmr.ijnmr_49_19 DOI: https://doi.org/10.4103/ijnmr.IJNMR_49_19
Schwab, K. (2018). The Fourth Industrial Revolution. World Economic Forum. doi:https://www.weforum.org/about/the-fourth-industrial-revolution-by-klaus-schwab/
Semiz, B. B., & Semiz, T. (2021). Examining consumer use of mobile health applications by the extended UTAUT model. Business Management International Journal. DOI: https://doi.org/10.15295/bmij.v9i1.1773
Siddharta, A. (2024). Statista. Retrieved from Internet penetration rate in Malaysia 2014-2029: https://www.statista.com/statistics/975058/internet-penetration-rate-in-malaysia/
Sun, X., Wang, X., Wu, Y., Meng, Z., Li, J., Xu, L., & Zhang, S. (2023). Willingness to Use Mobile Health Devices in the Post–COVID–19 Era: Nationwide Cross-sectional Study in China. Journal of Medical Internet Research, 25. doi:https://doi.org/10.2196/44225 DOI: https://doi.org/10.2196/44225
Thompson, A., Dawson, D., Mulvale, J. L., Chandran, N., Tanchip, C., Niemczyk, V., . . . Nalder, E. (2023). Mobile Technoloogy-Based Interventions for Stroke Self-Management Support: Scoping Review. JMIR mHealth and uHealth. DOI: https://doi.org/10.2196/preprints.46558
To, W. M., Lee, P. K., Lu, J., Wang, J., Yang, Y., & Yu, Q. (2019). What motivates Chinese young adults to use mHealth? Healthcare (MDPI). doi:https://doi.org/10.3390/healthcare7040156 DOI: https://doi.org/10.3390/healthcare7040156
Venkatesh, V., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly. doi:DOI: 10.2307/30036540 ·
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly. doi:http://dx.doi.org/10.2307/30036540 DOI: https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y., & Xu, X. (2016). Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. Journal of the Association for Information Systems, 17(5). doi:http://dx.doi.org/10.17705/1jais.00428 DOI: https://doi.org/10.17705/1jais.00428
Wahl, B., Gantner, A. C., Germann, S., & Schwalbe, N. (2018). Artificial Intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ Global Health. doi:https://doi.org/10.1136/bmjgh-2018-000798 DOI: https://doi.org/10.1136/bmjgh-2018-000798
WHO. (2011). MHealth: New horizon for health through mobile technologies. Retrieved from World Health Organization: Global Observatory for eHealth.
WHO. (2018). Classification of Digital Health Interventions. Retrieved from World Health Organization: http://who.int/reproductivehealth/topics/mhealth/en/.
Xia, L., Zhou, Z., Liu, F., Xie, Y., Luo, S., Chaoyuan, L., & Zhang, Y. (2019). Exploring Factors Influencing Patients’ Intention to Use Diabetes Management Mobile Apps Based on an Integrated Theoretical Model—a Web-Based Survey in China (Preprint). Journal of Medical Internet Research.
Zhu, Y., Zhao, Z., Guo, J., Wang, Y., Zhang, C., Zheng, J., & Wei, L. (2023). Understanding Use Intention of mHealth Applications Based on the Unified Theory of Acceptance and Use of Technology 2 (UTATU-2) Model in China. International Journal Environment Research and Public Health, 20(4). doi:https://doi.org/10.3390%2Fijerph20043139 DOI: https://doi.org/10.3390/ijerph20043139
Zin, K. L., Kim, S., Kim, H.-S., & Feyissa, I. F. (2022). A Study on Technology Acceptance of Digital Healthcare among Older Korean Adults Using Extended Tam (Extended Technology Acceptance Model). MDPI Healthcare. DOI: https://doi.org/10.3390/admsci13020042
Copyright (c) 2024 Che Nur Asmani Amirah Che Mohd Nawi, Zuhal Hussein, Che Nur Asmani Amira Che Mohd Nawi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Author (s) should affirm that the material has not been published previously. It has not been submitted and it is not under consideration by any other journal. At the same time author (s) need to execute a publication permission agreement to assume the responsibility of the submitted content and any omissions and errors therein. After submission of revised paper in the light of suggestions of the reviewers, the editorial team edits and formats manuscripts to bring uniformity and standardization in published material.
This work will be licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) and under condition of the license, users are free to read, copy, remix, transform, redistribute, download, print, search or link to the full texts of articles and even build upon their work as long as they credit the author for the original work. Moreover, as per journal policy author (s) hold and retain copyrights without any restrictions.