Money Laundering: A Review of Literature and Future Research
Abstract
Money laundering is one of the financial crimes that has become a major concern in most countries worldwide. The rising number of reported instances of money laundering could be driven by several reasons. With this growth, there is a growing academic interest in money laundering research; therefore, opportunities should be created for interested academics to evaluate the evolution of research in this field. This study was intended to evaluate published studies in this field from the origin of the idea of money laundering to the present to identify major trends or issues in money laundering research and to propose a research agenda for the future. A qualitative research design was adopted using a content analysis approach. It was found that most of the research focuses more on the relationship of money laundering with other offenses and the detection methods but lacking in the understanding of money laundering and the rules and regulations related to money laundering. This study is intended to be useful to current and future scholars in the field of financial crimes who are interested in the evolution of the literature and in identifying areas for future research
Downloads
References
Alldridge, P. (2001). Are tax evasion offenses predicate offenses for money?laundering offenses? Journal of Money Laundering Control, 4(4). https://doi.org/10.1108/eb027286 DOI: https://doi.org/10.1108/eb027286
Ardizzi, G., De Franceschis, P., & Giammatteo, M. (2018). Cash payment anomalies and money laundering: An econometric analysis of Italian municipalities. International Review of Law and Economics, 56, 105-121. https://doi.org/10.1016/j.irle.2018.08.001 DOI: https://doi.org/10.1016/j.irle.2018.08.001
Badal-Valero, E., Alvarez-Jareño, J. A., & Pavía, J. M. (2018). Combining Benford’s law and machine learning to detect money laundering: An actual Spanish court case. Forensic Science International, 282, 24-34. https://doi.org/10.1016/j.forsciint.2017.11.008 DOI: https://doi.org/10.1016/j.forsciint.2017.11.008
Balakina, O., D’Andrea, A., & Masciandaro, D. (2017). Bank secrecy in offshore centers and capital flows: Does blacklisting matter? Review of Financial Economics, 32, 30-57. https://doi.org/10.1016/j.rfe.2016.09.005 DOI: https://doi.org/10.1016/j.rfe.2016.09.005
Bartolozzi, D., Gara, M., Marchetti, D. J., & Masciandaro, D. (2022). Designing the anti-money laundering supervisor: The governance of the financial intelligence units. International Review of Economics & Finance, 80, 1093-1109. https://doi.org/10.1016/j.iref.2022.03.009 DOI: https://doi.org/10.1016/j.iref.2022.03.009
Betron, M. (2012). The state of anti-fraud and AML measures in the banking industry. Computer Fraud & Security, 2012(5), 5-7. https://doi.org/10.1016/S1361-3723(12)70039-8 DOI: https://doi.org/10.1016/S1361-3723(12)70039-8
Bridges, M. J. (1997). Taking the profit out of crime. Journal of Money Laundering Control, 1(1), 26-32. https://doi-org.ezaccess.library.uitm.edu.my/10.1108/eb027117 DOI: https://doi.org/10.1108/eb027117
Canhoto, A. I. (2021). Leveraging machine learning in the global fight against money laundering and terrorism financing: An affordances perspective. Journal of Business Research, 131, 441-452. https://doi.org/10.1016/j.jbusres.2020.10.012 DOI: https://doi.org/10.1016/j.jbusres.2020.10.012
Caulkins, J. P., & Reuter, P. (2022). How much demand for money laundering services does drug selling create? Identifying the key parameters. International Journal of Drug Policy, 103 DOI: https://doi.org/10.1016/j.drugpo.2022.103652
Christou, I. T., Bakopoulos, M., Dimitriou, T., Amolochitis, E., Tsekeridou, S., & Dimitriadis, C. (2011). Detecting fraud in online games of chance and lotteries. Expert Systems with Applications, 38(10), 13158-13169. https://doi.org/10.1016/j.eswa.2011.04.124 DOI: https://doi.org/10.1016/j.eswa.2011.04.124
Colladon, A. F., & Remondi, E. (2017). Using social network analysis to prevent money laundering. Expert Systems with Applications, 67, 49-58. https://doi.org/10.1016/j.eswa.2016.09.029 DOI: https://doi.org/10.1016/j.eswa.2016.09.029
Demetis, D. S. (2018). Fighting money laundering with technology: A case study of Bank X in the UK. Decision Support Systems, 105, 96-107. https://doi.org/10.1016/j.dss.2017.11.005 DOI: https://doi.org/10.1016/j.dss.2017.11.005
Devine, J. A., Currit, N., Reygadas, Y., Liller, L. I., & Allen, G. (2020). Drug trafficking, cattle ranching, and land use and land cover change in Guatemala’s Maya Biosphere Reserve. Land Use Policy, 95. https://doi.org/10.1016/j.landusepol.2020.104578 DOI: https://doi.org/10.1016/j.landusepol.2020.104578
Didimo, W., Grilli, L., Liotta, G., Montecchiani, F., & Pagliuca, D. (2019). Visual querying and analysis of temporal fiscal networks. Information Sciences, 505, 406-421. https://doi.org/10.1016/j.ins.2019.07.097 DOI: https://doi.org/10.1016/j.ins.2019.07.097
Dolar, B., & Shughart, W. F. (2011). Enforcement of the USA Patriot Act's anti-money laundering provisions: Have regulators followed a risk-based approach? Global Finance Journal, 22(1), 19-31. https://doi.org/10.1016/j.gfj.2011.05.002 DOI: https://doi.org/10.1016/j.gfj.2011.05.002
Domashova, J., & Mikhailina, N. (2021). Usage of machine learning methods for early detection of money laundering schemes. Procedia Computer Science, 190, 184-192. https://doi.org/10.1016/j.procs.2021.06.033 DOI: https://doi.org/10.1016/j.procs.2021.06.033
Dre?ewski, R., Sepielak, J., & Filipkowski, W. (2015). The application of social network analysis algorithms in a system supporting money laundering detection. Information Sciences, 295, 18-32. https://doi.org/10.1016/j.ins.2014.10.015 DOI: https://doi.org/10.1016/j.ins.2014.10.015
Eifrem, E. (2019). How graph technology can map patterns to mitigate money-laundering risk. Computer Fraud & Security, 2019(10), 6-8. https://doi.org/10.1016/S1361-3723(19)30105-8 DOI: https://doi.org/10.1016/S1361-3723(19)30105-8
Eulaiwi, B., Al-Hadi, A., Taylor, G., Dutta, S., Duong, L., & Richardson, G. (2021). Tax haven use, the pricing of audit and non-audit services, suspicious matters reporting obligations, and whistleblower hotline facilities: Evidence from Australian financial corporations. Journal of Contemporary Accounting & Economics, 17(2). https://doi.org/10.1016/j.jcae.2021.100262 DOI: https://doi.org/10.1016/j.jcae.2021.100262
Fletcher, E., Larkin, C., & Corbet, S. (2021). Countering money laundering and terrorist financing: A case for bitcoin regulation. Research in International Business and Finance, 56. https://doi.org/10.1016/j.ribaf.2021.101387 DOI: https://doi.org/10.1016/j.ribaf.2021.101387
Gikonyo, C. (2018). Rationalizing the use of the anti-money laundering regime in tackling Somalia's piracy for ransom. International Journal of Law, Crime and Justice, 52, 155-164. https://doi.org/10.1016/j.ijlcj.2017.11.004 DOI: https://doi.org/10.1016/j.ijlcj.2017.11.004
Gobena, M. A. (2021). Why money laundering is nurtured in Ethiopia? Journal of Money Laundering Control, Vol. ahead-of-print No. ahead-of-print. https://doi-org.ezaccess.library.uitm.edu.my/10.1108/JMLC-09-2021-0090 DOI: https://doi.org/10.1108/JMLC-09-2021-0090
Gowin, K.D., Wang, D., Jory, S.R., Houmes, R., & Ngo, T. (2021). Impact on the firm value of financial institutions from penalties for violating anti-money laundering and economic sanctions regulations. Finance Research Letters, 40, 1-7. https://doi.org/10.1016/j.frl.2020.101675 DOI: https://doi.org/10.1016/j.frl.2020.101675
Jayasree, V., & Siva Balan, R.V. (2017). Money laundering regulatory risk evaluation using Bitmap Index-based Decision Tree. Journal of the Association of Arab Universities for Basic and Applied Sciences, 23, 96-102. http://dx.doi.org/10.1016/j.jaubas.2016.03.001 DOI: https://doi.org/10.1016/j.jaubas.2016.03.001
Jurith, E. (2003). Acts of terror, illicit drugs and money laundering. Journal of Financial Crime, 11(2), 158-162. https://doi.org/10.1108/13590790410809086 DOI: https://doi.org/10.1108/13590790410809086
Kemsley, D., Kemsley, S.A., & Morgan, F.T. (2022). Tax evasion and money laundering: A complete framework. Journal of Financial Crime, 29(2), 589-602. https://doi.org/10.1108/JFC-09-2020-0175 DOI: https://doi.org/10.1108/JFC-09-2020-0175
Klimova, S. (2016). Role of intelligent systems in upgrading of information exchange between FSFM1 and banks. Procedia Computer Science, 88, 534-537. https://doi.org/10.1016/j.procs.2016.07.476 DOI: https://doi.org/10.1016/j.procs.2016.07.476
Kwok, D.Y.K. (2008). An overview of the anti?money laundering laws of Hong Kong. Journal of Money Laundering Control, 11(4), 345-357. https://doi.org/10.1108/13685200810910411 DOI: https://doi.org/10.1108/13685200810910411
Larik, A.S., & Haider, S. (2011). Clustering-based anomalous transaction reporting. Procedia Computer Science, 3, 606-610. https://doi.org/10.1016/j.procs.2010.12.101 DOI: https://doi.org/10.1016/j.procs.2010.12.101
Loayza, N., Villa, E., & Misas, M. (2019). Illicit activity and money laundering from an economic growth perspective: A model and an application to Colombia. Journal of Economic Behavior & Organization, 159, 442-487. https://doi.org/10.1016/j.jebo.2017.10.002 DOI: https://doi.org/10.1016/j.jebo.2017.10.002
McCarthy, K.J., van Santen, P., & Fiedler, I. (2015). Modeling the money launderer: Micro-theoretical arguments on anti-money laundering policy. International Review of Law and Economics, 43, 148-155. https://doi.org/10.1016/j.irle.2014.04.006 DOI: https://doi.org/10.1016/j.irle.2014.04.006
McCarthy-Jones, A., Doyle, C., & Turner, M. (2020). From hierarchies to networks: The organizational evolution of the international drug trade. International Journal of Law, Crime and Justice, 63. https://doi.org/10.1016/j.ijlcj.2020.100436 DOI: https://doi.org/10.1016/j.ijlcj.2020.100436
Muhammaddun Mohamed, Z., & Ahmad, K. (2012). Investigation and prosecution of money laundering cases in Malaysia. Journal of Money Laundering Control, 15(4), 421-429. https://doi.org/10.1108/13685201211266006 DOI: https://doi.org/10.1108/13685201211266006
Neely, A. (2016). The evolution of performance measurement research – developments in the last decade and a research agenda for the next.
Niyetullayev, N., & Almond, P. (2014). Money laundering and the shadow economy in Kazakhstan. Journal of Money Laundering Control, 17(2), 128-140. https://doi.org/10.1108/JMLC-05-2013-0015 DOI: https://doi.org/10.1108/JMLC-05-2013-0015
Ngai, E.W.T., Hu, Y., Wong, Y.H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of the literature. Decision Support Systems, 50(3), 559-569. https://doi.org/10.1016/j.dss.2010.08.006 DOI: https://doi.org/10.1016/j.dss.2010.08.006
Norton, S.D. (2018). Suspicion of money laundering reporting obligations: Auditor compliance, or skeptical failure to engage? Critical Perspectives on Accounting, 50, 56-66. https://doi.org/10.1016/j.cpa.2017.09.003 DOI: https://doi.org/10.1016/j.cpa.2017.09.003
Omar, N., & Johari, Z.A. (2015). An international analysis of FATF recommendations and compliance by DNFBPS. Procedia Economics and Finance, 28, 14-23. https://doi.org/10.1016/S2212-5671(15)01076-X DOI: https://doi.org/10.1016/S2212-5671(15)01076-X
Paradise, T.S. (1998). Money laundering and international political economy. Journal of Money Laundering Control, 1(3), 229-244. https://doi-org.ezaccess.library.uitm.edu.my/10.1108/eb027145 DOI: https://doi.org/10.1108/eb027145
Passas, N. (2018). Report on the debate regarding EU cash payment limitations. Journal of Financial Crime, 25(1), 5-27. https://doi.org/10.1108/JFC-06-2017-0058 DOI: https://doi.org/10.1108/JFC-06-2017-0058
Picard, P.M., & Pieretti, P. (2011). Bank secrecy, illicit money and offshore financial centers. Journal of Public Economics, 95(7–8), 942-955. https://doi.org/10.1016/j.jpubeco.2011.01.004 DOI: https://doi.org/10.1016/j.jpubeco.2011.01.004
Poon, J. P.H. (2021). Regulating the global illicit economy: Singapore's role in United States' spatial financial surveillance. Political Geography, 91. https://doi.org/10.1016/j.polgeo.2021.102493 DOI: https://doi.org/10.1016/j.polgeo.2021.102493
Premti, A., Jafarinejad, M., & Balani, H. (2021). The impact of the Fourth Anti-Money Laundering Directive on the valuation of EU banks. Research in International Business and Finance, 57. https://doi.org/10.1016/j.ribaf.2021.101397 DOI: https://doi.org/10.1016/j.ribaf.2021.101397
Ravenda, D., Valencia-Silva, M.M., Argiles-Bosch, J.M., & García-Blandón, J. (2019). Money laundering through the strategic management of accounting transactions. Critical Perspectives on Accounting, 60, 65-85. https://doi.org/10.1016/j.cpa.2018.08.003 DOI: https://doi.org/10.1016/j.cpa.2018.08.003
Rhodes, R., & Palastrand, S. (2004). A guide to money laundering legislation. Journal of Money Laundering Control, 8(1), 9-18. https://doi.org/10.1108/13685200510621271 DOI: https://doi.org/10.1108/13685200510621271
Rocha-Salazar, J., Segovia-Vargas, M., & Camacho-Miñano, M. (2022). Detection of shell companies in financial institutions using a dynamic social network. Expert Systems with Applications, 207. https://doi.org/10.1016/j.eswa.2022.117981 DOI: https://doi.org/10.1016/j.eswa.2022.117981
Rusanov, G., & Pudovochkin, Y. (2021). Money laundering in the modern crime system. Journal of Money Laundering Control, 24(4), 860-868. https://doi-org.ezaccess.library.uitm.edu.my/10.1108/JMLC-08-2020-0085 DOI: https://doi.org/10.1108/JMLC-08-2020-0085
Schwarz, P. (2011). Money launderers and tax havens: Two sides of the same coin? International Review of Law and Economics, 31(1), 37-47. https://doi.org/10.1016/j.irle.2010.12.001 DOI: https://doi.org/10.1016/j.irle.2010.12.001
Shanmugam, B., & Thanasegaran, H. (2008). Combating money laundering in Malaysia. Journal of Money Laundering Control, 11(4), 331-344. https://doi.org/10.1108/13685200810910402 DOI: https://doi.org/10.1108/13685200810910402
Shen, Y., Sharkey, T.C., Szymanski, B.K., & Wallace, W. (2021). Interdicting interdependent contraband smuggling, money and money laundering networks. Socio-Economic Planning Sciences, 78. https://doi.org/10.1016/j.seps.2021.101068 DOI: https://doi.org/10.1016/j.seps.2021.101068
Simser, J.R. (2020). Canada’s financial intelligence unit: FINTRAC. Journal of Money Laundering Control, 23(2), 297-307. https://doi-org.ezaccess.library.uitm.edu.my/10.1108/JMLC-10-2019-0079 DOI: https://doi.org/10.1108/JMLC-10-2019-0079
Singh, K., & Best, P. (2019). Anti-money laundering: Using data visualization to identify suspicious activity. International Journal of Accounting Information Systems, 34. https://doi.org/10.1016/j.accinf.2019.06.001 DOI: https://doi.org/10.1016/j.accinf.2019.06.001
Stack, G. (2015). Money laundering in Ukraine: Tax evasion, embezzlement, illicit international flows and state capture. Journal of Money Laundering Control, 18(3), 382-394. https://doi.org/10.1108/JMLC-05-2014-0013 DOI: https://doi.org/10.1108/JMLC-05-2014-0013
Tan, V. (2018). The art of deterrence: Singapore’s anti-money laundering regimes. Journal of Financial Crime, 25(2), 467-498. https://doi.org/10.1108/JFC-01-2018-0001 DOI: https://doi.org/10.1108/JFC-01-2018-0001
Tertychnyi, P., Godgildieva, M., Dumas, M., & Ollikainen, M. (2022). Time-aware and interpretable predictive monitoring system for anti-money laundering. Machine Learning with Applications, 8. https://doi.org/10.1016/j.mlwa.2022.100306 DOI: https://doi.org/10.1016/j.mlwa.2022.100306
Tran, T.T.H., & De Koker, L. (2019). Aligning financial inclusion and financial integrity: Regulating and supervising microfinance in Vietnam. Journal of Money Laundering Control, 22(4), 595-613. https://doi-org.ezaccess.library.uitm.edu.my/10.1108/JMLC-01-2019-0004 DOI: https://doi.org/10.1108/JMLC-01-2019-0004
Turki, M., Hamdan, A., Cummings, R.T., Sarea, A., Karolak, M., & Anasweh, M. (2020). The regulatory technology “RegTech” and money laundering prevention in the Islamic and conventional banking industry. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e04949 DOI: https://doi.org/10.1016/j.heliyon.2020.e04949
Verhage, A. (2017). Great expectations but little evidence: Policing money laundering. International Journal of Sociology and Social Policy, 37(7/8), 477-490. https://doi.org/10.1108/IJSSP-06-2016-0076 DOI: https://doi.org/10.1108/IJSSP-06-2016-0076
Whisker, J., & Lokanan, M.E. (2019). Anti-money laundering and counter-terrorist financing threats posed by mobile money. Journal of Money Laundering Control, 22(1), 158-172. https://doi-org.ezaccess.library.uitm.edu.my/10.1108/JMLC-10-2017-0061 DOI: https://doi.org/10.1108/JMLC-10-2017-0061
Zhang, G., Gao, Z., Dong, J., & Mei, D. (2022). Machine learning approaches for constructing the national anti-money laundering index. Finance Research Letters. https://doi.org/10.1016/j.frl.2022.103568 DOI: https://doi.org/10.1016/j.frl.2022.103568
Copyright (c) 2024 Rozaiha Ab Majid, Mohd Mohit Rahamad, Nor Aishah Mohd Ali, Siti Aisyah Basri
This work is licensed under a Creative Commons Attribution 4.0 International License.
Author (s) should affirm that the material has not been published previously. It has not been submitted and it is not under consideration by any other journal. At the same time author (s) need to execute a publication permission agreement to assume the responsibility of the submitted content and any omissions and errors therein. After submission of revised paper in the light of suggestions of the reviewers, the editorial team edits and formats manuscripts to bring uniformity and standardization in published material.
This work will be licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) and under condition of the license, users are free to read, copy, remix, transform, redistribute, download, print, search or link to the full texts of articles and even build upon their work as long as they credit the author for the original work. Moreover, as per journal policy author (s) hold and retain copyrights without any restrictions.