The Effect of Artificial Intelligence (AI) on Students' Learning

  • Hairunnisa Ma’amor Universiti Teknologi MARA, Malaysia
  • Nur'ain Achim Universiti Teknologi MARA, Malaysia
  • Nor Lela Ahmad Universiti Teknologi MARA, Malaysia
  • Nabila Suraya Roszaman Universiti Teknologi MARA, Malaysia
  • Najwa Noor Kamarul Anuar Universiti Teknologi MARA, Malaysia
  • Nur Camelia Aqielah Khairul Azwa Universiti Teknologi MARA, Malaysia
  • Sahira Nabila Abd Rahman Universiti Teknologi MARA, Malaysia
  • Nur Ain Aqilah Hamjah Universiti Teknologi MARA, Malaysia
Keywords: Artificial Intelligence (AI), Student’s Engagement, Personalized Learning Experience, Academic Performance.

Abstract

Various studies have been conducted to identify factors that contribute to student engagement, personalized learning experience, and student academic performance. The evolution of technology offers various benefits including in the education sector. To date, the use of Artificial Intelligence (AI) in education has been seen to provide various benefits. This study aims to identify the relationship between the usage of AI with student engagement, personalized learning experience, and student academic performance. Data was collected from 110 undergraduate students from the Faculty of Business and Management, UiTM Puncak Alam Campus using a questionnaire. 106 data were analyzed using SPSS version 29. The findings show that AI usage for study purposes significantly influences student’s engagement and academic performance. On the other hand, the usage of AI and personalized learning experience show no significant influence. This study not only provides a deeper understanding of the context of AI usage for better student engagement and academic performance but also gives valuable insight for UiTM and faculty specifically to develop strategies and modules that enhance the implementation and usage of AI in their learning activities.

Downloads

Download data is not yet available.

References

Al Husaini, Y. N. S., & Shukor, N. S. A. (2022). Factors affecting students’ academic performance: A review. Res Militaris, 12(6), 284-294.

Alam, K. (2021). The future of AI in education: How artificial intelligence is revolutionizing learning. Educational Technology, 40(2), 12-19.

Andersen, J. C. (2013). Learner satisfaction in online learning: An analysis of the perceived impact of learner-social media and learner–instructor interaction. (Doctoral dissertation. East Tennessee State University, Tennessee).

Baker, R., & Ryan, S. (2019). Game-based learning and artificial intelligence: A review of applications in educational games. International Journal of Game-Based Learning, 10(1), 23-45.

Beaulac, M., & Rosenthal, S. (2019). Artificial intelligence in education: Applications and ethical concerns. Journal of Learning Analytics, 6(2), 45-56.

Bolliger, D. U., & Martin, F. (2018). Instructor and student perceptions of online student engagement strategies. Distance education, 39(4), 568-583. DOI: https://doi.org/10.1080/01587919.2018.1520041

Boninger, F., Williamson, B., & Eynon, R. (2020). Artificial intelligence and equity in education. Computers & Education, 55(4), 290-300. https://doi.org/10.1016/j.compedu.2020.104780

Bonneton-Botte, N., Fleury, S., Girard, N., Le Magadou, M., Cherbonnier, A., Renault, M., Anquetil, E., & Jamet, E. (2020). Can tablet apps support the learning of handwriting? An investigation of learning outcomes in a kindergarten classroom. Computers & Education, 151. https://doi.org/10.1016/j.compedu.2020.103831 DOI: https://doi.org/10.1016/j.compedu.2020.103831

Chan, R. (2019). The Cambridge Analytica whistleblower explains how the firm used Facebook data to sway elections. Business Insider. Retrieved from https://www.businessinsider.com/cambridge-analytica-whistleblower-christopher-wyliefacebook-data-2019-10

Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial intelligence trends in education: A narrative overview. Procedia Computer Science, 136, 16-24. https://doi.org/10.1016/j.procs.2018.08.233 DOI: https://doi.org/10.1016/j.procs.2018.08.233

Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education: Contributors, collaborations, research topics, challenges, and future directions. Educational Technology & Society, 25(1), 28–47. DOI: https://doi.org/10.1007/s10639-022-11209-y

Cheng, L., Umapathy, K., Rehman, M., Ritzhaupt, A., Antonyan, K., Shidfar, P., Nichols, J., Lee, M., & Abramowitz, B. (2023). Designing, developing, and validating a measure of undergraduate students' conceptions of artificial intelligence in education. Journal of Interactive Learning Research, 34(2), 275-311.

Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118. https://doi.org/10.1016/j.caeai.2022.100118 DOI: https://doi.org/10.1016/j.caeai.2022.100118

Cox, Andrew M., Pinfield, S. and Rutter, S. (2018). The intelligent library: Thought leaders’ views on the likely impact of artificial intelligence on academic libraries, Library Hi Tech, 37(3), 418-435. DOI: https://doi.org/10.1108/LHT-08-2018-0105

Crawford, K., & Calo, R. (2016). There is a blind spot in AI research. Nature, 538(7625), 311–313 DOI: https://doi.org/10.1038/538311a

Cruz-Benito, J., Moreno-Ger, P., Fernández-Manjón, B., & García-Peñalvo, F. J. (2019). Ethics and artificial intelligence in education: Student perceptions. Journal of Technology and Society, 15(3), 23-40.

Daniel, B. (2015). Big data and analytics in higher education: opportunities and challenges. British journal of educational technology, 46(5), 904-920. DOI: https://doi.org/10.1111/bjet.12230

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.

Fu, S., Gu, H., & Yang, B. (2020). The affordances of AI?enabled automatic scoring applications on learners’ continuous learning intention: An empirical study in China. British Journal of Educational Technology, 51(5), 1674-1692. DOI: https://doi.org/10.1111/bjet.12995

Garikapati, D., & Shetiya, S. S. (2024). Autonomous Vehicles: Evolution of Artificial Intelligence and the Current Industry Landscape. Big Data and Cognitive Computing, 8(4), 42 DOI: https://doi.org/10.3390/bdcc8040042

Gonzalez-Calatayud, A., Luckin, R., & Holmes, W. (2021). Artificial intelligence in education: A review of current applications and future directions. AI in Education Journal, 12(3), 150-165.

Hannan, E., & Liu, S. (2021). AI: New source of competitiveness in higher education. Competitiveness Review: An International Business Journal, 33(2), 265-279. https://doi.org/10.1108/cr-03-2021-0045 DOI: https://doi.org/10.1108/CR-03-2021-0045

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education promises and implications for teaching and learning. Center for Curriculum Redesign.

Holmes, W., Hui, Z., Miao, F., & Ronghuai, H. (2021). AI and education: A guidance for policymakers. UNESCO Publishing.

Huang, A. Y., Lu O. H., Huang J. C., Yin C., Yang S. J. (2020). Predicting students’ academic performance by using educational big data and learning analytics: evaluation of classification methods and learning logs. Interactive Learning Environments, 28(2), 206-230. DOI: https://doi.org/10.1080/10494820.2019.1636086

Huang, A. Y. Q., Lu, O. H. T., & Yang, S. J. H. (2023). Effects of artificial intelligence-enabled personalized recommendations on learners' learning engagement, motivation, and outcomes in a flipped classroom. Computers & Education, 194, 104684. DOI: https://doi.org/10.1016/j.compedu.2022.104684

Hutchins, D. (2017, November 13). How Artificial Intelligence is Boosting Personalization in Higher Education. EdTech Magazine. https://edtechmagazine.com/higher/article/2017/11/ai-boosts-personalized-learning-higher-education

Ili?, M. P., P?un, D., Popovi? Ševi?, N., Hadži?, A., & Jianu, A. (2021). Needs and performance analysis for changes in higher education and implementation of artificial intelligence, machine learning, and extended reality. Education Sciences, 11(10), 568. DOI: https://doi.org/10.3390/educsci11100568

Kang, H. (2023). Artificial intelligence and its influence on adult learning in China. Higher Education, Skills and Work-Based Learning, 13(3), 450-464. DOI: https://doi.org/10.1108/HESWBL-01-2023-0017

Kang, M., & Im, T. (2013). Factors of learner–instructor interaction that predict perceived learning outcomes in the online learning environment. Journal of Computer Assisted Learning, 29(3), 292–301. DOI: https://doi.org/10.1111/jcal.12005

Kazu, I. Y and Kuvvetli, M. (2023). The impact of virtual reality technology on student engagement and learning outcomes in higher education. 2nd International Conference on Recent Academic Studies ICRAS 2023.

Kuh, G. D. (2009). What student affairs professionals need to know about student engagement. Journal of College Student Development, 50(6), 683-706. DOI: https://doi.org/10.1353/csd.0.0099

Kuhl, P. K., Lim, S. S., Guerriero, S., & Damme, D. V. (2019). Developing minds in the digital age. Paris, France: OECD Publishing. https://doi.org/10.1787/562a8659-en DOI: https://doi.org/10.1787/562a8659-en

Kuleto, V., Ili?, M., Dumangiu, M., Rankovi?, M., Martins, O. M., P?un, D., & Mihoreanu, L. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. Sustainability, 13(18), 10424. DOI: https://doi.org/10.3390/su131810424

Lee, E., & Hannafin, M. J. (2016). A design framework for enhancing engagement in student-centered learning: Own it, learn it, and share it. Educational technology research and development, 64, 707-734. DOI: https://doi.org/10.1007/s11423-015-9422-5

Linert, J., & Kopacek, P. (2016). Robots for Education (Edutainment). IFAC-PapersOnLine, 49(29), 24–29. doi:10.1016/j.ifacol.2016.11 DOI: https://doi.org/10.1016/j.ifacol.2016.11.065

Luan, H., Geczy, P., Lai, H., Gobert, J., Yang, S. J., Ogata, H., Baltes, J., Guerra, R., Li, P. & Tsai, C. C. (2020). Challenges and future directions of big data and artificial intelligence in education. Frontiers in Psychology, 11, 580820. DOI: https://doi.org/10.3389/fpsyg.2020.580820

Luckin, R. (2017). Towards artificial intelligence-based assessment systems. Nature Human Behavior, 1(3), 1–3 DOI: https://doi.org/10.1038/s41562-016-0028

Luckin, R., & Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences?driven approach. British Journal of Educational Technology, 50(6), 2824-2838. DOI: https://doi.org/10.1111/bjet.12861

Martínez-Comesanã, M., Rigueira-Díaz, X., Larrañaga-Janeiro, A., Martínez-Torres, J., Ocarranza-Prado, I., & Kreibel, D. (2023). Impact of artificial intelligence on assessment methods in primary and secondary education: Systematic literature review. Revista de Psicodidáctica (English ed.), 28(2), 93-103. DOI: https://doi.org/10.1016/j.psicoe.2023.06.002

Moraes, E. B., Kipper, L. M., Hackenhaar Kellermann, A. C., Austria, L., Leivas, P., Moraes, J. A. R., & Witczak, M. (2023). Integration of Industry 4.0 technologies with Education 4.0: advantages for improvements in learning. Interactive Technology and Smart Education, 20(2), 271-287. DOI: https://doi.org/10.1108/ITSE-11-2021-0201

Mohanty, A., Mohanty, J., Naveen, L., Mohanty, S., & Acharya, A. (2023), Artificial intelligence transforming customer service management: Embracing the future. Journal of the Oriental Institute.

Murphy, R. F. (2019). Artificial intelligence applications to support K-12 teachers and teaching. The RAND Corporation. https:// doi.org/10.7249/PE315

Nabiyev, V., Karal, H., Arslan, S., Erumit, A. K., & Cebi, A. (2013). An artificial intelligence-based distance education system: Artimat. The Turkish Online Journal of Distance Education, 14(2), 81–98. https://eric.ed.gov/?id=EJ1013738

Okunlaya, R. O., Syed Abdullah, N., & Alias, R. A. (2022). Artificial intelligence (AI) library services: Innovative conceptual framework for the digital transformation of university education. Library Hi Tech, 40(6), 1869–1892. https://doi.org/10.1108/lht-07-2021-0242 DOI: https://doi.org/10.1108/LHT-07-2021-0242

Paramesha, M., Rane, N. L., & Rane, J. (2024). Artificial Intelligence, Machine Learning, Deep Learning, and Blockchain in Financial and Banking Services: A Comprehensive Review. Partners Universal Multidisciplinary Research Journal, 1(2), 51-67. DOI: https://doi.org/10.2139/ssrn.4855893

Pacheco-Mendoza, S., Guevara, C., Mayorga-Albán, A., & Fernández-Escobar, J. (2023). Artificial intelligence in higher education: A predictive model for academic performance. Education Sciences, 13(10), 990. https://doi.org/10.3390/educsci13100990 DOI: https://doi.org/10.3390/educsci13100990

Popenici, S. A., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 22. DOI: https://doi.org/10.1186/s41039-017-0062-8

Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26(2), 582–599. DOI: https://doi.org/10.1007/s40593-016-0110-3

Salkind, N. J. (2009). Exploring research (10th ed). New Jersey: Pearson Education, Inc.

Seo, K., Tang, J., Roll, I., Fels, S., & Yoon, D. (2021). The impact of artificial intelligence on learner–instructor interaction in online learning. International journal of educational technology in higher education, 18, 1-23. DOI: https://doi.org/10.1186/s41239-021-00292-9

Shackelford, J. L., & Maxwell, M. (2012). Contribution of learner–instructor interaction to a sense of community in graduate online education. MERLOT Journal of Online Learning and Teaching, 8(4), 248–260. DOI: https://doi.org/10.19173/irrodl.v13i4.1339

Tadese, M., Yeshaneh, A., & Mulu, G. B. (2022). Determinants of good academic performance among university students in Ethiopia: a cross-sectional study. BMC Medical Education, 22(1), 395. DOI: https://doi.org/10.1186/s12909-022-03461-0

Tiwari, R. (2023). The integration of AI and machine learning in education and its potential to personalize and improve student learning experiences. International Journal of Scientific Research in Engineering and Management, 7. DOI: https://doi.org/10.55041/IJSREM17645

Topal, A. D., Eren, C. D., & Gecer, A. K. (2021). Chatbot application in a 5th-grade science course. Education and Information Technologies, 26(5), 6241–6265. https://doi.org/ 10.1007/s10639-021-10627-8 DOI: https://doi.org/10.1007/s10639-021-10627-8

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56. DOI: https://doi.org/10.1038/s41591-018-0300-7

Tsai, S. C., Chen, C. H., Shiao, Y. T., Ciou, J. S., & Wu, T. N. (2020). Precision education with statistical learning and deep learning: A case study in Taiwan. International Journal of Educational Technology in Higher Education, 17(1). https://doi.org/ 10.1186/s41239-020-00186-2 DOI: https://doi.org/10.1186/s41239-020-00186-2

Troncoso-Pastoriza, F., Martínez-Comesana, M., Ogando-Martínez, A., López-Gómez, J., Eguía-Oller, P., & Febrero-Garrido, L. (2022). IoT-based platform for automated IEQ spatio-temporal analysis in buildings using machine learning techniques. Automation in Construction, 139, 104261. DOI: https://doi.org/10.1016/j.autcon.2022.104261

Villegas-Ch, W., Sanchez-Viteri, S. & Roman-Canizares, M. (2021). Academic activities recommendation system for sustainable education in the age of COVID-19. Informatics, 8(2). https://doi.org/10.3390/informatics8020029. Article 29 DOI: https://doi.org/10.3390/informatics8020029

Von Garrel, J., & Mayer, J. (2023). Artificial intelligence in studies: Use of ChatGPT and AI-based tools among students in Germany. Humanities and Social Sciences Communications, 10(1), 1-9. https://doi.org/10.1057/s41599-023-02304-7 DOI: https://doi.org/10.1057/s41599-023-02304-7

Walker, C. H. (2016). The correlation between types of instructor-student communication in online graduate courses and student satisfaction levels in the private university setting. Doctoral dissertation. Carson-Newman University, Tennessee.

Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. Learning, Media and Technology, 45(3), 223–235. https://doi.org/10.1080/17439884.2020.1798995 DOI: https://doi.org/10.1080/17439884.2020.1798995

Wogu, I. A. P., Misra, S., Olu-Owolabi, E. F., Assibong, P. A., Udoh, O. D., Ogiri, S. O., & Damasevicius, R. (2018). Artificial intelligence, artificial teachers and the fate of learners in the 21st-century education sector: Implications for theory and practice. International Journal of Pure and Applied Mathematics, 119(16), 2245–2259.

Xia, Q., Chiu, T. K. F, Lee, M., Temitayo I., Dai, Y., & Chai, C.S. (2022). A Self-determination theory design approach for inclusive and diverse Artificial Intelligence (AI) education, Computers & Education, 189, 104582. doi: 10.1016/j.compedu.2022.104582. DOI: https://doi.org/10.1016/j.compedu.2022.104582

Xu, X., Dugdale, D. M., Wei, X., & Mi, W. (2023). Leveraging artificial intelligence to predict young learner online learning engagement. American Journal of Distance Education, 37(3), 185-198. DOI: https://doi.org/10.1080/08923647.2022.2044663

Xu, X., Wang, J., Peng, H. & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166–173. https://doi.org/10.1016/j.chb.2019.04.015 DOI: https://doi.org/10.1016/j.chb.2019.04.015

Yang, D., Oh, E. S., & Wang, Y. (2020). Hybrid physical education teaching and curriculum design based on a voice interactive artificial intelligence educational robot. Sustainability, 12(19), 8000. DOI: https://doi.org/10.3390/su12198000

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education-where are the educators? International Journal of Educational Technology in Higher Education, 16(39), 1-27. https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0

Zhang, C., Chen, H., & Phang, C. W. (2018). Role of instructors’ forum interactions with students in promoting MOOC continuance. Journal of Global Information Management (JGIM), 26(3), 105–120. DOI: https://doi.org/10.4018/JGIM.2018070108

Published
2024-10-27
How to Cite
Ma’amor, H., Achim, N., Ahmad, N. L., Roszaman, N. S., Kamarul Anuar, N. N., Khairul Azwa, N. C. A., Abd Rahman, S. N., & Aqilah Hamjah, N. A. (2024). The Effect of Artificial Intelligence (AI) on Students’ Learning. Information Management and Business Review, 16(3S(I)a), 856-867. https://doi.org/10.22610/imbr.v16i3S(I)a.4178
Section
Research Paper