Artificial Intelligence-Powered Risk Assessment in Supply Chain Safety

  • N. Sureshkumar PP Narayanan University of East London
  • Farha Ghapar Universiti Poly-Tech Malaysia
  • Li Lian Chew Binary University, Binary Business School
  • Veera Pandiyan Kaliani Sundram Universiti Teknologi MARA
  • Babudass M.Naidu Bumi Sendayan Sdn. Bhd., Petaling Jaya
  • Mohd Hafiz Zulfakar Universiti Teknologi MARA
  • Azimah Daud Universiti Teknologi MARA
Keywords: Artificial Intelligence, Supply Chain Risk Management, Logistics Safety

Abstract

The increasing complexity and globalization of supply chains necessitate robust risk management strategies to ensure safety and resilience. Traditional risk assessment methods often fall short in dynamically adapting to the rapidly changing conditions and voluminous data inherent in modern supply chains. This study explores the potential of Artificial Intelligence (AI)-powered risk assessment to address these limitations in the context of Malaysia's supply chain industry. By employing AI technologies such as machine learning, IoT, and predictive analytics, organizations can significantly enhance their risk management capabilities, improving predictive accuracy, real-time monitoring, and overall operational efficiency. Through a qualitative analysis involving in-depth interviews with supply chain managers, AI experts, and technology vendors, the study identifies the strategies employed for AI integration, the perceived effectiveness of these technologies, and the challenges faced in implementation. The findings highlight the importance of robust data governance, the development of explainable AI models, and continuous skill development to overcome barriers related to data quality, model interpretability, and high implementation costs. The study concludes with recommendations for fostering a safer and more resilient logistics environment in Malaysia, emphasizing the need for comprehensive AI adoption frameworks and scalable solutions for small and medium-sized enterprises.

Downloads

Download data is not yet available.

References

Al Doghan, M. A., & Sundram, V. P. K. (2023). Organization operational efficiency and Innovativeness: Exploring the role of employees’ task-based training, operational task commitment, operational engagement, and supervisor support. International Journal of Operations and Quantitative Management, 29(1), 108-127.

Atika, S. B., Mokhtar, A. R. M., Muhamed, A. A., & Sundram, V. P. K. (2024). The mediating effect of eco-innovation on low-carbon supply chain practices toward manufacturing firm performance in Malaysia. Journal of International Logistics and Trade. DOI 10.1108/JILT-03-2023-0013

Choi, T. Y., Rogers, D. S., & Vakil, B. (2018). Coronavirus is a wake-up call for supply chain management. Harvard Business Review. Retrieved from https://hbr.org/2020/03/coronavirus-is-a-wake-up-call-for-supply-chain-management

Christopher, M., & Peck, H. (2004). Building the resilient supply chain. International Journal of Logistics Management, 15(2), 1-14. https://doi.org/10.1108/09574090410700275 DOI: https://doi.org/10.1108/09574090410700275

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2019). A survey of methods for explaining black box models. ACM Computing Surveys (CSUR), 51(5), 1-42. https://doi.org/10.1145/3236009 DOI: https://doi.org/10.1145/3236009

Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829-846. https://doi.org/10.1080/00207543.2018.1488086 DOI: https://doi.org/10.1080/00207543.2018.1488086

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2 DOI: https://doi.org/10.1038/s42256-019-0088-2

Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 135, 700-713. https://doi.org/10.1016/j.psep.2020.11.025 DOI: https://doi.org/10.1016/j.psep.2020.11.025

Mkumbo, F. A. E., Ibrahim, A. R., Salleh, A. L., Sundram, V. P. K. & Atikah S. B. (2019). The Influence of Supply Chain Practices and Performance Measurement Practices towards Firm Performance, International Journal of Supply Chain Management, 8(3), 809-819.

Narayanan, N. S. P., Ghapar, F., Chew, L. L., Sundram, V. P. K., Jayamani, U., & Muhammad, A. (2024a). Measuring the Unmeasured: Exploring the Concept of “Supply Chain Quotient”[SCQ]. Information Management and Business Review, 16(2 (I) S), 36-43. DOI: https://doi.org/10.22610/imbr.v16i2(I)S.3766

Narayanan, N. S. P., Ghapar, F., Chew, L. L., Sundram, V. P. K., Jayamani, U., & Muhammad, A. (2024b). Optimizing Working Capital Management in Supply Chain Finance: A Multi-Dimensional Approach. Information Management and Business Review, 16(2 (I) S), 44-52. DOI: https://doi.org/10.22610/imbr.v16i2(I)S.3767

Othman, N. A. F., Izhan, F. F. A., Sundram, V. P. K., Majid, M., Din, S. Z. M., Munir, Z. A., & Razali, M. Z. M. (2023). Modeling workplace ostracism among workforces amid pandemic outbreaks. Information Management and Business Review, 15(4 (SI) I), 86-93. DOI: https://doi.org/10.22610/imbr.v15i4(SI)I.3579

Papadopoulos, T., Gunasekaran, A., Dubey, R., Fosso Wamba, S., & Childe, S. J. (2017). Big data and analytics in operations and supply chain management: Managerial aspects and practical challenges. Production Planning & Control, 28(11-12), 873-876. https://doi.org/10.1080/09537287.2017.1336795 DOI: https://doi.org/10.1080/09537287.2017.1336795

Riahi, Y., Saidi, M., & Jabbehdari, S. (2021). The challenges of AI in supply chain risk management: A case study. Procedia Computer Science, 181, 644-653. https://doi.org/10.1016/j.procs.2021.01.202 DOI: https://doi.org/10.1016/j.procs.2021.01.202

Russell, S. J., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Pearson.

Selvaraju, M., Beleya, P., & Sundram, V. P. K. (2017). Supply chain cost reduction using mitigation & resilient strategies in the hypermarket retail business. International Journal of Supply Chain Management, 6(2), 116-121.

Sivan, S., Anuar, R., Krishnasamy, T., Bahrin, A. S., Narayanan, N. S. P., & Sundram, V. P. K. (2024a). Optimizing Safety Practices and Culture: A Comprehensive Examination through Perception Surveys in Malaysia's Logistics Industry. Information Management and Business Review, 16(1 (I) S), 33-38. DOI: https://doi.org/10.22610/imbr.v16i1(I)S.3723

Sivan, S., Anuar, R., Krishnasamy, T., Bahrin, A. S., Narayanan, N. S. P., & Sundram, V. P. K. (2024b). Integrating Safety Practices into the Supply Chain for Sustainable Development in Malaysia's Building Construction Sites. Information Management and Business Review, 16(1 (I) S), 24-32. DOI: https://doi.org/10.22610/imbr.v16i1(I)S.3722

Sivan, S., Ghadiri, S. M., Rajagopal, P., Bahrin, A. S., & Sundram, V. P. K. (2022). Adoption and benefit of industrial revolution 4.0 in the logistics industry: A conceptual paper. Journal of Entrepreneurship Business and Economics, 10(2S1), 79-94.

Sundram, V. P. K., Chandran, V. G. R., Atikah, S. B., Rohani, M., Nazura, M. S., Akmal, A. O., & Krishnasamy, T. (2016). Research methodology: Tools, methods, and techniques. MLSCA, Selangor.

Sundram, V. P. K., Rajagopal P., Atikah S. B. & Subramaniam, G. (2018). The Role of Supply Chain Integration on Green Practices and Performance in a Supply Chain Context: A Conceptual Approach to Future Research, International Journal of Supply Chain Management, 7(1), 95-104.

Sundram, V. P. K., Rajagopal P., Nur Atiqah Z. A., Atikah S. B. & Appasamy, G. Zarina, A. M. (2018). Supply Chain Responsiveness in an Asian Global Electronic Manufacturing Firm: ABX Energy (M), International Journal of Supply Chain Management, 7(2), 23-31.

Sundram, V. P. K., Rajagopal, P., Nur Atiqah, Z. A., Atikah, S. B., Appasamy, G., & Zarina, A. M. (2018). Supply chain responsiveness in an Asian global electronic manufacturing firm: ABX energy (M). International Journal of Supply Chain Management, 7(2), 23-31.

Sundram, V.P.K., Ghapar, Chew, LL and Muhammad, A. (2023). Engaging Lean Six Sigma Approach Using DMAIC Methodology for Supply Chain Logistics Recruitment Improvement, Information Management and Business Review 15 (2), 46-53. DOI: https://doi.org/10.22610/imbr.v15i1(I)SI.3401

Sundram, V.P.K., Ghapar, F. Osman, MF., Chew, LL and Muhammad, A. (2023). Lean Six-Sigma Approach for Sub-Contract Licensing and its Process Improvement across the Manufacturing Supply Chain using GUT Priority Matrix, Information Management and Business Review 15 (2), 1-8. DOI: https://doi.org/10.22610/imbr.v15i2(I)SI.3413

Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451-488. https://doi.org/10.1016/j.ijpe.2005.12.006 DOI: https://doi.org/10.1016/j.ijpe.2005.12.006

Vatumalae, V., Rajagopal, P., & Sundram, V. P. K. (2020). Warehouse operations measurement in hypermarket retailers: A review of the literature. International Journal of Supply Chain Management, 9(5), 1276.

Vatumalae, V., Rajagopal, P., Sundram, V. P. K., & Hua, Z. (2022). A study of retail hypermarket warehouse inventory management in Malaysia. SMART Journal of Business Management Studies, 18(1), 71-79. DOI: https://doi.org/10.5958/2321-2012.2022.00009.4

Wamba, S. F., & Akter, S. (2019). Understanding supply chain analytics capabilities and agility for data-rich environments. International Journal of Operations & Production Management, 39(6), 887-912. https://doi.org/10.1108/IJOPM-01-2019-0025 DOI: https://doi.org/10.1108/IJOPM-01-2019-0025

Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2020). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 159, 193-210. https://doi.org/10.1016/j.ijpe.2014.04.021 DOI: https://doi.org/10.1016/j.ijpe.2014.04.021

Zetty Zahureen, M. Y., Nur Zahidah, B., Ismadi I., Bujang, I. & Sundram, V.P.K. (2020), Quantitative Research Methods, Asian Academy, Petaling Jaya, Malaysia.

Published
2024-10-27
How to Cite
Narayanan, N. S. P., Ghapar, F., Chew, L. L., Kaliani Sundram, V. P., M.Naidu, B., Zulfakar, M. H., & Daud, A. (2024). Artificial Intelligence-Powered Risk Assessment in Supply Chain Safety. Information Management and Business Review, 16(3S(I)a), 107-114. https://doi.org/10.22610/imbr.v16i3S(I)a.4124
Section
Research Paper