Unravelling Smart HRM 4.0: A Narrative Review of Progressive 4.0 Technology Integration in Human Resource Management

  • Syezreen Dalina Rusdi Universiti Teknologi MARA
  • Ida Rosnita Ismail Universiti Kebangsaan Malaysia
  • Rosmah Mat Isa Universiti Kebangsaan Malaysia
Keywords: Industry 4.0, 4.0 technologies, Smart HRM 4.0, Ethical implications, Corporate digital responsibility.

Abstract

The integration of progressive 4.0 technology into human resource management (HRM) represents a significant shift in how organizations optimize and enhance workforce capabilities. This review explores the origins, applications, benefits, challenges and future prospects surrounding smart HRM 4.0. By reviewing existing literature, this paper examines the utilization of Artificial Intelligence (AI), Big Data analytics, machine learning (ML) and the Internet of Things (IoT) in HRM, specifically in talent acquisition, training, performance management, and rewards. Additionally, it addresses the implementation challenges including data quality assurance, skill shortages, and cultural resistance. The paper also emphasizes the importance of ethical considerations. In terms of future research, it highlights the necessity for ethically deploying Industry 4.0 and establishing robust AI governance frameworks. By combining technological innovation with ethical values, organizations can navigate the complexities of this integration, leading to a future characterized by workplace efficiency, accountability, and fairness.

Downloads

Download data is not yet available.

References

Abdeldayem, M. M., & Aldulaimi, S. H. (2020). Trends and opportunities of artificial intelligence in human resource management: Aspirations for the public sector in Bahrain. International Journal of Scientific and Technology Research, 9(1), 3867–3871
Abdussamad, Z., Agyei, I. T., Dongul E. S., Abdussamad, J., Raj, R. & Effendy, F. (2022). Impact of Internet of Things (IoT) on Human Resource Management: A review. Materials Today: Proceedings, 56, 3534–3543
Abellan-Sevilla, A.J. & de-Urbina-Criad, M. O. (2023). Smart human resource analytics for happiness management. Journal of Management Development, 42(6), 514-525.
Agarwal, A. (2023). AI adoption by human resource management: a study of its antecedents and impact on HR system effectiveness. Foresight, 25(1), 67-81.
Agrawal, P., Narain, R. & Ullah, I. (2020). Analysis of barriers in the implementation of digital transformation of supply chain using an interpretive structural modelling approach. Journal of Modelling in Management, 15(1), 297-317.
Albaroudi, E., Mansouri, T. & Alameer, A. (2024). A Comprehensive Review of AI Techniques for Addressing Algorithmic Bias in Job Hiring. AI, 5(1), 383-404.
Al-Harazneh, Y.M. & Sila, I. (2021), The impact of E-HRM usage on HRM effectiveness: highlighting the roles of top management support, HR professionals, and line managers. Journal of Global Information Management, 29(2), 118-147.
Al-Khatib, A.W., Al-Fawaeer, M.A., Alajlouni, M.I. & Rifai, F.A. (2022). Conservative culture, innovative culture, and innovative performance: a multi-group analysis of the moderating role of the job type. International Journal of Innovation Science, 14(3/4), 675-692.
Angrave, D., Charlwood, A., Kirkpatrick, I., Lawrence, M., & Stuart, M. (2016). HR and analytics: Why HR is set to fail the big data challenge. Human Resource Management Journal, 26(1), 1-11.
Artar, M., Balcioglu, Y. S. & Erdil, O. (2024). Improving the quality of hires via the use of machine learning and an expansion of the person-environment fit theory. Management Decision, 0025-1747, doi 10.1108/MD-12-2023-2295.
Bankins, S. 2021. The ethical use of artificial intelligence in human resource management: a decision-making framework. Ethics and Information Technology, 23(4), 841-854.
Bohmer, N. & Schinnenburg, H. (2023). Critical exploration of AI-driven HRM to build up organizational capabilities. Employee Relations: The International Journal, 45(5), 1057-1082.
Bockius, H. & Gatzert, N. (2023). Organizational risk culture: a literature review on dimensions, assessment, value relevance, and improvement levers. European Management Journal, doi: 10. 1016/J.EMJ.2023.02.002.
Bujold, A., Roberge Maltais, I., Parent Rocheleau, X., Boasen J., Senecall, S. & Leger, P. M. (2023). Responsible artificial intelligence in human resources management: a review of the empirical literature. AI and Ethics, https://doi.org/10.1007/s43681-023-00325-1.
Bozkus, K. (2024). Organizational Culture Change and Technology: Navigating the Digital Transformation. IntechOpen. doi: 10.5772/intechopen.112903.
Calabrese, A., Levialdi Ghiron, N. & Tiburzi, L. (2021), ‘Evolutions’ and ‘revolutions’ in manufacturers’ implementation of industry 4.0: a literature review, a multiple case study, and a conceptual framework. Production, Planning and Control, 32(3), 213-227.
Calabrese, A., Dora, M., Ghiron, N.L. & Tiburzi, L. (2022). Industry’s 4.0 transformation process: how to start, where to aim, what to be aware of. Production, Planning and Control. 33(5), 492-512.
Charlwood, A. & Guenole, N. (2022). Can HR adapt to the paradoxes of artificial intelligence? Human Resource Management Journal, 32(4), 729-742.
Chatterjee, S., Chaudhuri, R., Vrontis, D., & Siachou, E. (2021). Examining the dark side of human resource analytics: An empirical investigation using the privacy calculus approach. International Journal of Manpower, 43(1), 52–74.
Cheng, M. M., & Hackett, R. D. (2021). A critical review of algorithms in HRM: Definition, theory, and practice. Human Resource Management Review, 31(1), 100698. https://doi.org/10.1016/j.hrmr.2019.100698
Chen, Z. (2022). Artificial intelligence-virtual trainer: Innovative didactics aimed at personalized training needs. Journal of the Knowledge Economy, 14, 2007–2025. https://doi.org/10.1007/s13132-022 00985-0
Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A. & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1), 100899
Culot, G., Nassimbeni, G., Orzes, G., & Sartor, M. (2020). Behind the definition of Industry 4.0: Analysis and open questions. International Journal of Production Economics, 226, 107617.
Duman, M. & Akdemir, B. (2021). A study to determine the effects of Industry 4.0 technology components on organizational performance. Technological Forecasting and Social Change, 167, 0-3.
Flores, E., Xu, X., & Lu, Y. (2020). Human Capital 4.0: A workforce competence typology for Industry 4.0. Journal of Manufacturing Technology Management, 31(4), 687–703.
Gal, U., Jensen, T. B., & Stein, M.K. (2020). Breaking the vicious cycle of algorithmic management: A Virtue ethics approach to people analytics. Information and Organization, 30(2), 100301. https://doi.org/10.1016/j.infoandorg.2020.100301
Ganatra, N. J. & Pandaya, J. D. (2023). The transformative impact of artificial intelligence on hr practices and employee experience: A review. Journal of Management Research and Analysis, 10(2), 106-111.
Ghobakhloo, M., Vilkas, M., Stefanini, A., Grybauskas, Marcinkevicius, G., Petraite, M. & Sarvari, P. A. (2023). Developing capabilities underlying Industry 4.0 design principles within the manufacturing context. Journal of Manufacturing Technology Management, 34(7), 1183-1207.
Goretzko, D. & Israel, L.S.F. (2022). Pitfalls of machine learning-based personnel selection: fairness, transparency, and data quality. Journal of Personnel Psychology, 21(1), 37-47, doi: 10.1027/1866-5888/a000287.
Hamilton, R. H. & Sodeman, W.A. (2020). The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources. Business Horizons, 63, 85-95.
Hartley, N., Kunz, W. & Tabit, J. (2024). The corporate digital responsibility (CDR) calculus: How and why organizations reconcile digital and ethical trade-offs for growth. Organizational Dynamics, 53(2), 101056. https://doi.org/10.1016/j.orgdyn.2024.101056.
Heidemann, A., Hulter, S. M. & Tekieli, M. (2024). Machine learning with real-world HR data: mitigating the trade-off between predictive performance and transparency. The International Journal of Human Resource Management, 35(14), 2343-2366
Hickman, L., Saef, R., Ng, V., Woo, S. E., Tay, L., & Bosch, N. (2021). Developing and evaluating language-based machine learning algorithms for inferring applicant personality in video interviews. Human Resource Management Journal, 34(2), 255-274. https://doi. org/10.1111/1748-8583.12356
Hmoud, B. (2021). Assessing HR Leader’s attitude toward the adoption of artificial intelligence in recruitment. Journal of EcoAgriTourism, 17(1), 20-32
Hoffmann Souza, M.L., da Costa, C.A., de Oliveira R. G. & da Rosa R. R. (2020). A survey on decision-making based on system reliability in the context of Industry 4.0. Journal of Manufacturing Systems, 56, 133-156.
Hunkenschroer, A.L. & Luetge, C. (2022). Ethics of AI-enabled recruiting and selection: a review and research agenda. Journal of Business Ethics, 178(4), 977-1007
James, A.T., Kumar, G., Tayal, P., Chauhan, A., Wadhawa, C. & Panchal, J. (2022). Analysis of human resource management challenges in the implementation of Industry 4.0 in the Indian automobile industry. Technological Forecasting and Social Change, 176, 121483
Kamble, S. S., Gunasekaran, A., & Sharma, R. (2018). Analysis of the driving and dependence power of barriers to adopt Industry 4.0 in the Indian manufacturing industry. Computers in Industry, 101, 107-119. https://doi.org/10.1016/j. compind.2018.06.004
Lobschat, L., Mueller, B., Eggers, F., Brandimarte, L., Diefenbach, S., Kroschke, M., & Wirtz, J. J. J. (2021). Corporate digital responsibility. Journal of Business Research, 122, 875–888.
Maamari, B.E. & Osta, A. (2021). The effect of HRIS implementation success on job involvement, job satisfaction and work engagement in SMEs. International Journal of Organizational Analysis, 29(5), 1269-1286.
Marcon, E., Soliman, M., Gerstlberger, W. & Frank, A.G. (2022). Sociotechnical factors and Industry 4.0: an integrative perspective for the adoption of smart manufacturing technologies. Journal of Manufacturing Technology Management, 33(2), 259-286.
Marler, J.H. & Boudreau, J.W. (2017). An evidence-based review of HR Analytics. International Journal of Human Resource Management, 28(1), 3-26.
Matt, D. T., Orzes, G., Rauch, E., & Dallasega, P. (2020). Urban production – A socially sustainable factory concept to overcome shortcomings of qualified workers in smart SMEs. Computers and Industrial Engineering, 139. https://doi.org/10.1016/j. cie.2018.08.035
McIver, D., Lengnick-Hall, M. A., & Lengnick-Hall, C. A. (2018). A strategic approach to workforce analytics. Business Horizons, 61(3), 397-407.
Meddour, H., Abdussalaam, I. I., & Abdul Majid, A. H. (2020). Withstanding the effect of Industry 4.0: The role of high-performance work system and management philosophy. International Journal of Supply Chain Management, 9(1), 511–519.
Meijerink, J., Boons, M., Keegan, A., & Marler, J. (2021). Algorithmic human resource management: Synthesizing developments and cross-disciplinary insights on digital HRM. The International Journal of Human Resource Management, 32(12), 2545–2562.
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2). https://doi.org/10.1177/2053951716679679
Mohanty, S., & Mishra, P. C. (2020). Framework for understanding the Internet of Things in human resource management. Espacios, 41(12), 3-15.
Murugesan, U., Subramanian, P., Srivastava, S. & Dwivedi, A. (2023). A study of Artificial Intelligence impacts on Human Resource Digitalization in Industry 4.0. Decision Analytics Journal, 7, 100249. https://doi.org/10.1016/j.dajour.2023.100249
Nayem, Z. & Uddin, M. A. (2024). Unbiased employee performance evaluation using machine learning. Journal of Open Innovation: Technology, Market, and Complexity 10(1), 100243. https://doi.org/10.1016/j.joitmc.2024.100243.
Nicolas-Agust?n, A., Jimenez-Jimenez, D. & Maeso-Fernandez, F. (2022). The role of human resource practices in the implementation of digital transformation. International Journal of Manpower, 43(2), 395-410.
Ogbeibu, S., Pereira, V., Emelifeonwu, J. & Gaskin, J. (2021). Bolstering creativity willingness through digital task interdependence, disruptive and smart HRM technologies. Journal of Business Research, 124, 422-436. doi: 10.1016/j.jbusres.2020.10.06
Oswal, N., Ateeq, K., & Mathew, S. (2021). Trends in Recruitment Information and Communication System using Artificial Intelligence in Industry 4.0. International Conference on Finance, Economics, Management and IT Business. (pp.111-118). DOI:10.5220/0010503201110118
Pessach, D., Singer, G., Avrahami, D., Chalutz Ben-Gal, H., Shmueli, E., & Ben-Gal, I. (2020). Employee recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134. https://doi.org/10.1016/j.dss.2020.1132
Pillai, R. & Srivastava, K.B.L. (2024). Smart HRM 4.0 for achieving organizational performance: a dynamic capability view perspective. International Journal of Productivity and Performance Management, 73 (2), 476-496.
Pillai, R. & Srivastava, K.B.L. (2023). Smart HRM 4.0 practices for organizational performance: the role of dynamic capabilities. Benchmarking: An International Journal, 13(1), 1-23.
Pillai, R. & Sivathanu, B. (2020). Adoption of artificial intelligence (AI) for talent acquisition in IT/ ITeS organizations. Benchmarking, 27 (9), 2599-2629.
Pillai, R., Yadav, S., Sivathanu, B., Kaushik, N. & Goel, P. (2021). Use of 4.0 (I4.0) technology in HRM: a pathway toward SHRM 4.0 and HR performance. Foresight, 24(6), 708-727.
Rodgers, W., Murray, J. M., Stefanidis, A., Degbey, W. Y. & Tarba, S. Y. (2023). An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Human Resource Management Review, 33. https://doi.org/10.1016/j.hrmr.2022.100925
Sahin, F., Karadag, H. & Tuncer, B. (2019). Big five personality traits, entrepreneurial self-efficacy and entrepreneurial intention: a configurational approach. International Journal of Entrepreneurial Behaviour and Research, 25(6), 1118-1211.
Sakurada, L., Geraldes, C. A. S., Fernandes, F. P., Pontes, J., & Leitao, P. (2020). Analysis of new job profiles for the factory of the future. International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing, 262–273
Sarbu, M. (2022). The impact of Industry 4.0 on innovation performance: Insights from German manufacturing and service firms. Technovation, 113, 102415.
Samarasinghe, K.R. & Medis, A. (2020). Artificial intelligence-based strategic human management (AISHRM) for industry 4.0. Global Journal of Management and Business Research, 20(2), 1-4.
Shahreki, J., Ganesan, J., Raman, K., Chin, A.L.L. & Chin, T.S. (2019). The effect of human resource information system application on employee satisfaction and turnover intention. Entrepreneurship and Sustainability Issues, 7(2), 1462-1479.
Shahreki, J. & Lee, J. Y. (2024). Adopting human resource information system and work-related outcomes in emerging market SMEs: a unified theory of acceptance and use of technology. Cross Cultural & Strategic Management, 31(1), 116-142.
Shet, S. V. & Pereira, V. (2021). Proposed managerial competencies for Industry 4.0 – Implications for social sustainability. Technological Forecasting & Social Change, 173, 121080. https://doi.org/10.1016/j.techfore.2021.121080
Sivakumar, S., Mohan, U., Chankarachan, P., & Bhaduri, N. (2020). HR4.0: How Should HR Gear Up for Industry 4.0? NHRD Network Journal, 13(2), 190-196. https://doi.org/10.1177/2631454120931604
Soltani, P. & Morice, A.H.P. (2020). Augmented reality tools for sports education and training. Computers & Educations, 155. https://doi.org/10.1016/j.compedu.2020.103923.
Strohmeier, S. (2020). Smart HRM–a Delphi study on the application and consequences of the Internet of things in human resource management. The International Journal of Human Resource Management, 31(18), 2289-2318. doi: 10.1080/09585192.2018.1443963.
Talukdar, A. & Anirban, G. (2022), A dark side of e-HRM: mediating role of HR service delivery and HR socialization on HR effectiveness. International Journal of Manpower, 43(1), 116-147.
Tang, G., Park, K., Agarwal, A. & Liu, F. (2020). Impact of innovation culture, organization size and technological capability on the performance of SMEs: the case of China. Sustainability, 12(4), 1355. https://doi.org/10.3390/su12041355.
Toth, Z. & Blut, M. (2024). Ethical compass: The need for Corporate Digital Responsibility in the use of Artificial Intelligence in financial services. Organizational Dynamics, 53(2). https://doi.org/10.1016/j.orgyn.2024.10104.
van Dun, D.H. & Kumar, M. 2023. Social enablers of Industry 4.0 technology adoption: transformational leadership and emotional intelligence. International Journal of Operations & Production Management, 43(13), 152-182.
Verma, A., Bansal, M. & Verma, J. (2020). Industry 4.0: reshaping the future of HR. Strategic Direction, 36(5), 9-11.
Wirtz, J., Kunz, W. H., Hartley, N., & Tarbit, J. (2023). Corporate Digital Responsibility in Service Firms and their Ecosystems. Journal of Service Research, 26(2), 173-190.
Weiskopf, R., & Hansen, H. K. (2022). Algorithmic governmentality and the space of ethics: Examples from People Analytics. Human Relations, 76, 483–506.
Zhou, Y., Cheng, Y., Zou, Y. and Liu, G. (2022). e-HRM: a meta-analysis of the antecedents, consequences, and cross-national moderators. Human Resource Management Review, 32(4), 1-21.
Published
2024-10-05
How to Cite
Rusdi, S. D., Ismail, I. R., & Isa, R. M. (2024). Unravelling Smart HRM 4.0: A Narrative Review of Progressive 4.0 Technology Integration in Human Resource Management. Information Management and Business Review, 16(3(I)S), 415-423. https://doi.org/10.22610/imbr.v16i3(I)S.4070
Section
Research Paper