Navigating the Path to Equitable and Sustainable Digital Agriculture among Small Farmers in Malaysia: A Comprehensive Review

  • Omar Abu Hassim Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
  • Ismah Osman Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
  • Asmah Awal Faculty of Agriculture and Agrotechnology Universiti Teknologi MARA, Jasin Campus, Melaka, Malaysia
  • Fhaisol Mat Amin Agricultural Research and Development Institute Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
Keywords: Digital agriculture; smart farming; agriculture innovation; precision farming; agriculture 4.0; socio-cyber-physical-ecological systems; digital agricultural policy

Abstract

The agriculture sector has transformed with the advent of digital agriculture, smart farming and Agriculture 4.0, yet the social science aspects remain underexplored. This article aims to address this gap by conducting a comprehensive review of 17 studies that focus on the social, economic, and institutional dimensions of precision farming, digital agriculture, smart farming and Agriculture 4.0. The objectives are to explore the dynamics between digital agriculture and farm diversity and to identify emerging concerns related to economics, business, institutions, and ethics. Methodologically, the review synthesizes existing literature on socio-cyber-physical-ecological systems, digital agriculture policy processes, the transition from analog to digital agriculture and the global landscape of digital agriculture development. It adopts a multidisciplinary and transdisciplinary approach to provide a holistic understanding of the topic. The outcomes reveal significant implications for policymakers, farmers, and stakeholders in the agriculture sector. Key findings highlight the necessity of addressing social and economic impacts, such as data privacy, security, and accessibility, and the effects of automation on rural employment and community structures. The review emphasizes the importance of developing institutional and governance frameworks to support digital agriculture practices and tailoring policies to promote sustainable and equitable use of digital technologies. It explores how infrastructure, connectivity and local capacities influence the adoption of digital agriculture technologies. The review advocates for further research on the intersection of digital agriculture with broader societal trends, such as climate change, urbanization, and food system transformations, to develop strategies for sustainable and resilient food systems.

Downloads

Download data is not yet available.

References

Agyekumhene, C., de Vries, J.R., van Paassen, A., Macnaghten, P., Schut, M., Bregt, A. (2018). Digital platforms for smallholder credit access: the mediation of trust for cooperation in maize value chain financing. Njas Wageningen J. Life Sci. 86–87, 77–88. https://doi.org/10.1016/j.njas.2018.06.001.
Aker, J.C. (2011). Dial “A” for agriculture: a review of information and communication technologies for agricultural extension in developing countries. Agric. Econ. 42, 631–647.
Andreopoulou, Z., Tsekouropoulos, G., Koutroumanidis, T., Vlachopoulou, M., Manos, B., (2008). A typology for ebusiness activities in the agricultural sector. Int. J. Bus. Inf. Syst. 3, 231. https://doi.org/10.1504/IJBIS.2008.01728.
Annosi, M.C., Brunetta, F., Monti, A., Nat, F. (2019). Is the trend your friend? An analysis of technology 4.0 investment decisions in agricultural SMEs. Comput. Ind. 109, 59–71.
Balasundram, S. K., Shamshiri, R. R., Sridhara, S., & Rizan, N. (2023). The role of digital agriculture in mitigating climate change and ensuring food security: an overview. Sustainability, 15(6), 5325.
Barnes, A., De Soto, I., Eory, V., Beck, B., Balafoutis, A., Sánchez, B., Vangeyte, J., incentives farming systems. Environ. Sci. Policy 93, 66–74.
Barreto, L., & Amaral, A. (2018, September). Smart farming: Cyber security challenges. In 2018 International Conference on Intelligent Systems (IS) (pp. 870-876). IEEE.
Bear, C., Holloway, L. (2019). Beyond resistance: geographies of divergent more than human conduct in robotic milking. Geoforum 104, 212–221.
Bechtet, N. (2019). The role of extension services in the adoption of innovation by farmers. In: The Case of Precision Farming Tools for Fertilization, Noemie Bechtet. Presented at the 24th European Seminar on Extension Education, 18–21 June 2019, Acireale, Sicily, Italy.
Blok, V. (2018). Technocratic Management Versus Ethical Leadership Redefining Responsible Professionalism in the AgriFood Sector in the Anthropocene. J. Agric. Environ. Ethics 31, 583–591.
Blok, V., Gremmen, B. (2018). Agricultural technologies as living machines: toward a biomimetic conceptualization of smart farming technologies. Ethics Policy Environ. 21, 246–263.
Basso, B., & Antle, J. (2020). Digital agriculture to design sustainable agricultural systems. Nature Sustainability, 3(4), 254-256.
Bronson, K., (2018). Smart farming: including rights holders for responsible agricultural innovation. Technol. Innov. Manag. Rev. 8 (2), 7–14.
Bronson, K., (2019). Looking through a responsible innovation lens at uneven engagements with digital farming. Njas Wageningen J. Life Sci. https://doi.org/10.1016/j.njas. 2019.03.001.
Bronson, K., Knezevic, I., (2019). The digital divide and how it matters for Canadian food system equity. Can. J. Commun. 44, 63–68.
Brunori, G., Klerkx, L., Townsend, L., Dessein, J., Del Mar Delgado, M., Kotarakos, C., Nieto, E., Scotti, I., (2019). Favilli. Promoting Adaptive Capacity in the Digitization Process of Rural Areas: the DESIRA Methodology. in: Book of Abstracts, p. 6, XXVIII European Society for Rural Sociology Congress “Rural Futures in a Complex World” Trondheim, Norway June 25–28.
Burton, R.J.F., Riley, M., (2018). Traditional Ecological Knowledge from the Internet? The case of hay meadows in Europe. Land Use Policy 70, 334–346.
Busse, M., Schwerdtner, W., Siebert, R., Doernberg, A., Kuntosch, A., König, B., & Bokelmann, W. (2015). Analysis of animal monitoring technologies in Germany from an innovation system perspective. Agricultural Systems, 138, 55-65. https://doi.org/https://doi.org/10.1016/j.agsy.2015.05.009
Cainelli, G., Evangelista, R., Savona, M., (2004). The impact of innovation on economic performance in services. Serv. Ind. J. 24 (1), 116–130.
Carolan, M., (2017) b. Publicizing food: big data, precision agriculture, and Coexperimental techniques of addition. Social. Ruralis 57, 135–154.
Carolan, M., (2018) a. Big data and food retail: nudging out citizens by creating dependent consumers. Geoforum 90, 142–150.
Carolan, M., (2018) b. The Politics of Big Data: Corporate Agrifood Governance Meets “Weak” Resistance, Agri environmental Governance As an Assemblage: Multiplicity, Power, and Transformation. 195–212.
Carolan, M., (2019). Automated agrifood futures: robotics, labor, and the distributive politics of digital agriculture. J. Peasant Stud. https://doi.org/10.1080/03066150.2019. 1584189.
Chen, Y., Li, Y., & Li, C. (2020). Electronic agriculture, blockchain and digital agricultural democratization: Origin, theory and application. Journal of cleaner production, 268, 122071.
Agri-food Rural Community Development 8, 97–119.
Cieslik, K.J., Leeuwis, C., Dewulf, A.R.P.J., Lie, R., Werners, S.E., van Wessel, M., Feindt, P., Struik, P.C., (2018). Addressing socioecological development challenges in the digital age: exploring the potential of Environmental Virtual Observatories for Connective Action (EVOCA). Njas Wageningen J. Life Sci. 86–87, 2–11.
Coble, K.H., Mishra, A.K., Ferrell, S., Griffin, T., (2018). Big data in agriculture: a challenge for the future. Appl. Econ. Perspect. Policy 40, 79–96.
Daum, T., Buchwald, H., Gerlicher, A., Birner, R., (2018). Smartphone apps as a new method to collect data on smallholder farming systems in the digital age: a case study from Zambia. Comput. Electron. Agric. 153, 144.
DavidBenz, H., Andriandralambo, N., Rahelizatovo, N., (2017). Disseminating Price Information Through Mobile Phone: Are Malagasy Farmers Ready for It? Presented at the Conference Proceedings of 2017 EFITA WCCA Congress: European Conference Dedicated to the Future Use of ICT in the Agrifood Sector, Bioresource and Biomass Sector. Montpellier, France.150.
Dayio?lu, M. A., & Turker, U. (2021). Digital transformation for sustainable future-agriculture 4.0: a review. Journal of Agricultural Sciences, 27(4), 373-399.
Di Silvestre, M. L., Gallo, P., Guerrero, J. M., Musca, R., Sanseverino, E. R., Sciumè, G., ... & Zizzo, G. (2020). Blockchain for power systems: Current trends and future applications. Renewable and Sustainable Energy Reviews, 119, 109585.
Dufva, T., Dufva, M., (2019). Grasping the future of the digital society. Futures 107, 17–28. Dumont, B., Groot, J.C.J., Tichit, M., (2018). Review: Make ruminants green again how can sustainable intensification and agroecology converge for a better future? Animal 12, S210–S219.
Eastwood, C.R., Chapman, D.F., Paine, M.S., (2012). Networks of practice for coconstruction of agricultural decision support systems: case studies of precision dairy farms in Australia. Agric. Syst. 108, 10–18.
Eastwood, C., Klerkx, L., Ayre, M., et al., (2017) a. Managing socioethical challenges in the development of smart farming: from a fragmented to a comprehensive approach for responsible research and innovation. J. Agric. Environ. Ethics. https://doi.org/10. 1007/s1080601797045.
Eastwood, C., Ayre, M., Nettle, R., Dela Rue, B., (2019). Making sense in the cloud: farm advisory services in a smart farming future. Njas Wageningen J. Life Sci. https://doi. org/10.1016/j.njas.2019.04.004.
El Bilali, H., & Allahyari, M. S. (2018). Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Information Processing in Agriculture, 5(4), 456-464.
Fielke, S.J., Garrard, R., Jakku, E., Fleming, A., Wiseman, L., Taylor, B.M., (2019). Conceptualizing the DAIS: implications of the ‘Digitalization of Agricultural Innovation Systems’ on technology and policy at multiple levels. Njas Wageningen J. Life Sci. https://doi.org/10.1016/j.njas.2019.04.002.
Fleming, A., Jakku, E., LimCamacho, L., Taylor, B., Thorburn, P., (2018). Is big data for big farming or everyone? Perceptions in the Australian grains industry. Agron. Sustain. Dev. 38, 24.
Fraisse, C., Breuer, N., Zierden, D., Bellow, J., Paz, J., Cabrera, V., y Garcia, A. G., Ingram, K., Hatch, U., & Hoogenboom, G. (2006). AgClimate: A climate forecast information system for agricultural risk management in the southeastern USA. Computers and electronics in agriculture, 53(1), 13-27.
Fraser, A., (2019) a. The digital revolution, data curation, and the new dynamics of food sovereignty construction. J. Peasant Stud. 1–19.
Fraser, A., (2019) b. Land grab/data grab precision agriculture and its new horizons. J. Peasant Stud. 46, 893–912.
Freidberg, S., (2019). “Unable to determine”: limits to metrical governance in agricultural supply chains. Sci. Technol. Human Values, 0162243919870234.
Gaitán Cremaschi, D., Klerkx, L., Duncan, J., Trienekens, J.H., Huenchuleo, C., Dogliotti, S., Contesse, M.E., Rossing, W.A.H., (2019). Characterizing diversity of food systems in view of sustainability transitions. A review. Agron. Sustain. Dev. 39, 1.
Geissdoerfer, M., Savaget, P., Bocken, N.M., Hultink, E.J., (2017). The Circular Economy–A new sustainability paradigm? J. Clean. Prod. 143, 757–768.
Glenna, L., Hesse, A., Hinrichs, C., Chiles, R., Sachs, C., (2019). Qualitative research ethics in the big data era. Am. Behav. Sci. 63, 555–559.
Glover, D., Sumberg, J., Ton, G., Andersson, J., Badstue, L., (2019). Rethinking technology.
Higgins, V., Bryant, M., Howell, A., & Battersby, J. (2017). Ordering adoption: Materiality, knowledge and farmer engagement with precision agriculture technologies. Journal of Rural Studies, 55, 193-202.
HolyLuczaj, M., Blok, V., (2019). Hybrids and the boundaries of moral considerability or revisiting the idea of noninstrumental value. Philos. Technol. https://doi.org/10. 1007/s13347019003809.
Hull, V., Liu, J., (2018). Telecoupling: a new frontier for global sustainability. Ecol. Soc. 23 (4), 41.
Ingram, J., Gaskell, P., (2019). Searching for meaning: coconstructing ontologies with stakeholders for smarter search engines in agriculture. Njas Wageningen J. Life Sci. https://doi.org/10.1016/j.njas.2019.04.006.
Janc, K., Czapiewski, K., Wójcik, M., (2019). In the starting blocks for smart agriculture: the internet as a source of knowledge in transitional agriculture. Njas Wageningen J. Life Sci. https://doi.org/10.1016/j.njas.2019.100309. 100309.
Jespersen, L.M., Hansen, J.P., Brunori, G., Jensen, A.L., Holst, K., Mathiesen, C., Nalberg, N., Rasmussen, I.A., (2014). ICT and social media as drivers of multifactor innovation in agriculture barriers, recommendations, and potentials. Chapter 6 in Agricultural Knowledge and Innovation Systems Towards 2020: an Orientation Article on Linking Innovation and Research. EU, Brussels.
Jirotka, M., Grimpe, B., Stahl, B., Eden, G., Hartswood, M., (2017). Responsible research and innovation in the digital age. Commun. ACM 60, 62–68.
Jouanjean, M.A., (2019). Digital Opportunities for Trade in the Agriculture and Food Sectors. OECD Food, Agriculture and Fisheries Papers, No. 122. OECD Publishing, Paris.
Kamilaris, A., Kartakoullis, A., PrenafetaBoldú, F.X., (2017). A review of the practice of big data analysis in agriculture. Comput. Electron. Agric. 143, 23–37.
Kaushik, P., Chowdhury, A., Hambly Odame, H., van Passen, A., (2018). Social media for enhancing stakeholders’ innovation networks in Ontario, Canada. J. Agric. Food Inf. 1–23.
Kelly, N., Bennett, J.M., Starasts, A., (2017). Networked learning for agricultural extension: a framework for analysis and two cases. J. Agric. Educ. Ext. 23, 399–414.
Knierim, A., Kernecker, M., Erdle, K., Kraus, T., Borges, F., & Wurbs, A. (2019). Smart farming technology innovations–Insights and reflections from the German Smart-AKIS hub. NJAS-Wageningen Journal of Life Sciences, 90, 100314.
Leonard, E., Rainbow, R., Trindall, J., Baker, I., Barry, S., Darragh, S., Darnell, R., George, A., Heath, R., Jakku, E., Laurie, A., Lamb, D., Llewellyn, R., Perrett, E., Sanderson, J., Skinner, A., Stollery, T., Wiseman, W., Wood, G., Zhang, A., (2017). Accelerating Precision Agriculture to Decision Agriculture: Enabling Digital Agriculture in Australia. Cotton Research and Development Corporation.
Leveau, L., Bénel, A., Cahier, J.P., Pinet, F., Salembier, P., Soulignac, V., Bergez, J.E., (2019). Information and Communication Technology (ICT) and the Agroecological Transition, Agroecological Transitions: From Theory to Practice in Local Participatory Design. pp. 263–287.
Lindblom, J., Lundström, C., Ljung, M., & Jonsson, A. (2017). Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precision agriculture, 18, 309-331.
Lioutas, E.D., Charatsari, C., La Rocca, G., De Rosa, M., (2019). Key questions on the use of big data in farming: an activity theory approach. Njas Wageningen J. Life Sci. https://doi.org/10.1016/j.njas.2019.04.003.
Lio, M., Liu, M.C., (2006). ICT and agricultural productivity: evidence from cross-country data. Agric. Econ. 34, 221–228. https://doi.org/10.1111/j.15740864.2006.00120.x.
LowenbergDeBoer, J., Erickson, B., (2019). Setting the record straight on precision agriculture adoption. Agron. J. 111, 1552. https://doi.org/10.2134/agronj2018.12.0779.
Mann, L., (2018). Left to other peoples’ devices? A political economy perspective on the big data revolution in development. Dev. Change 49, 3–36.
Marin, A., NavasAlemán, L., Perez, C., (2015). Natural resource industries as a platform for the development of knowledge-intensive industries. Tijdschr. Voor Econ. En Soc. Geogr. 106, 154–168.
McCown, R.L., (2002). Changing systems for supporting farmers’ decisions: problems, paradigms, and prospects. Agric. Syst. 74, 179–220.
McGrath, K., Brown, C., Regan, Á., & Russell, T. (2023). Investigating narratives and trends in digital agriculture: A scoping study of social and behavioral science studies. Agricultural Systems, 207, 103616.
McMichael, P., (2005). Global Development and The Corporate Food Regime, Research in Rural Sociology and Development. pp. 265–299.
McPhearson, T., Haase, D., Kabisch, N., Gren, Å. (2016). Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573.
MacPherson, J., Voglhuber-Slavinsky, A., Olbrisch, M., Schöbel, P., Dönitz, E., Mouratiadou, I., & Helming, K. (2022). Future agricultural systems and the role of digitalization for achieving sustainability goals. A review. Agronomy for Sustainable Development, 42(4), 70.
Mills, J., Gaskell, P., Ingram, J., Dwyer, J., Reed, M., Short, C., (2017). Engaging farmers in environmental management through a better understanding of behavior. Agric Human Values 34, 283–299.
Miles, C., (2019). The combine will tell the truth: On precision agriculture and algorithmic rationality. Big Data Soc. 6. https://doi.org/10.1177/2053951719849444.
Mills, K.A., (2018). What are the threats and potentials of big data for qualitative research? Qual. Res. 18, 591–603.
Mogili, U. R., & Deepak, B. (2018). Review on application of drone systems in precision agriculture. Procedia computer science, 133, 502-509.
Nambisan, S., Wright, M., Feldman, M., (2019). The digital transformation of innovation and entrepreneurship: progress, challenges, and key themes. Res. Policy 48, 103773.
Oosterveer, P. (2015). Promoting sustainable palm oil: viewed from a global network and flows perspective. Journal of Cleaner Production, 107, 146-153.
Patrício, D.I., Rieder, R., (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review. Comput. Electron. Agric. 153, 69–81.
Phillips, P.W.B., RelfEckstein, J.A., Jobe, G., Wixted, B., (2019). Configuring the new digital landscape in Western Canadian agriculture. Njas Wageningen J. Life Sci. https://doi.org/10.1016/j.njas.2019.04.001.
Pigford, A.A.E., Hickey, G.M., Klerkx, L., (2018). Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions. Agric. Syst. 164, 116–121.
Plumecocq, G., Debril, T., Duru, M., Magrini, M.B., Sarthou, J.P., Therond, O., (2018). The plurality of values in sustainable agriculture models: diverse lock-in and coevolution patterns. Ecol. Soc. 23 (1), 21.
Regan, Á., (2019). ‘Smart farming’ in Ireland: a risk perception study with key governance actors. Njas Wageningen J. Life Sci. https://doi.org/10.1016/j.njas.2019.02.003.
RelfEckstein, J.A., Ballantyne, A.T., Phillips, P.W.B., (2019). Farming Reimagined: a case study of autonomous farm equipment and creating an innovation opportunity space for broadacre smart farming. Njas Wageningen J. Life Sci.
Rijswijk, K., Klerkx, L., Turner, J.A., (2019). Digitalization in the New Zealand Agricultural Knowledge and Innovation System: initial understandings and emerging organizational responses to digital agriculture. Njas Wageningen J. Life Sci.
Roberts, E., Beel, D., Philip, L., Townsend, L., (2017). Rural resilience in a digital society: editorial. J. Rural Stud. 54, 355–359.
Rojo Gimeno, C., Van der Voort, M., Niemi, J., Lauwers, L., Ringgaard Kristensen, A., Wauters, E., (2019). Assessment of the value of information of precision livestock farming: A conceptual framework. NJAS Wageningen Journal of Life Sciences.
Rodrigues, G. d. N., Amorim, E. P. D. R., Carvalho, V. N., Silva de Lima, S., Silva, E. M. d., Da Silva Filho, J. A., De Lins Cunha, J. X., Rodrigues de Lima, L. A., & Da Silva Araújo, A. (2019). Control of Peduncular Rot in Post-harvest Mango Fruits with Hydrotherapy and Refrigeration. Journal of Experimental Agriculture International, 37(4), 1-7.
Rotz, S., Gravely, E., Mosby, I., Duncan, E., Finnis, E., Horgan, M., LeBlanc, J., Martin, R., Neufeld, H. T., & Nixon, A. (2019). Automated pastures and the digital divide: How agricultural technologies are shaping labor and rural communities. Journal of Rural Studies, 68, 112-122.
Rose, D.C., Chilvers, J., (2018). Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Frontiers in Sustainable Food Systems, pp. 87.
Rose, D.C., Parker, C., Fodey, J., Park, C., Sutherland, W.J., Dicks, L.V., (2018). Involving stakeholders in agricultural decision support systems: improving user-centered design. Int. J. Agric. Manag. 6, 80–89.
Rutten, C.J., Steeneveld, W., Oude Lansink, A.G.J.M., Hogeveen, H., (2018). Delaying investments in sensor technology: the rationality of dairy farmers’ investment decisions illustrated within the framework of real options theory. J. Dairy Sci. 101, 7650–7660.
Rutten, C.J., Velthuis, A.G.J., Steeneveld, W., Hogeveen, H., (2013). Invited review: sensors to support health management on dairy farms. J. Dairy Sci. 96, 1928–1952.
Salemink, K., Strijker, D., Bosworth, G., (2017). Rural development in the digital age: a systematic literature review on unequal ICT availability, adoption, and use in rural areas. J. Rural Stud. 54, 360–371.
Sanderson, J., Wiseman, L., Poncini, S., (2018). What’s behind the Agdata logo? An examination of voluntary agricultural data codes of practice. Int. J. Rural Law Policy 1, 1–21.
Schewe, R. L., & Stuart, D. (2015). Diversity in agricultural technology adoption: How are automatic milking systems used and to what end? Agriculture and human values, 32, 199-213.
Schimmelpfennig, D., & Ebel, R. (2016). Sequential adoption and cost savings from precision agriculture. Journal of Agricultural and Resource Economics, 97-115.
Shamshiri, R.R., Weltzien, C., Hameed, I.A., Yule, I.J., Grift, T.E., Balasundram, S.K., Pitonakova, L., Ahmad, D., Chowdhary, G., (2018). Research and development in agricultural robotics: a perspective of digital farming. Int. J. Agric. Biol. Eng. 11, 1–14.
Shepherd, M., Turner, J.A., Small, B., Wheeler, D., (2018). Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. J. Sci. Food Agric. https://doi.org/10.1002/jsfa.9346.
Skvortsov, E.A., Skvortsova, E.G., Sandu, I.S., Iovlev, G.A., (2018). Transition of agriculture to digital, intellectual, and robotics technologies. Econ. Reg. 14, 1014–1028.
Smith, M.J., (2018). Getting value from artificial intelligence in agriculture. Anim. Prod. Sci. https://doi.org/10.1071/AN18522. (in press).
Soma, K., Bogaardt, M.J., Poppe, K., Wolfert, S., Beers, G., Urdu, D., Pesce, Kirova, M., Thurston, C., Monfort Belles, C., (2019). Research for AGRI Committee Impacts of the Digital Economy on the Food Chain and the CAP. Policy Department for Structural and Cohesion Policies, European Parliament. Brussels.
Teece, D.J., (2018). Profiting from innovation in the digital economy: enabling technologies, standards, and licensing models in the wireless world. Res. Policy 47, 1367–1387.
Trendov, N.M., Varas, S., Zenf, M., (2019). Digital Technologies in Agriculture and Rural Areas: Status Report. Food and Agricultural Organization of the United Nations, Rome.
Turner, J.A., Klerkx, L., Rijswijk, K., Williams, T., Barnard, T., (2016). Systemic problems affecting coinnovation in the New Zealand Agricultural Innovation System: identification of blocking mechanisms and underlying institutional logics. Njas Wageningen J. Life Sci. 76, 99–112.
Van der Burg, S., Bogaardt, M.J., Wolfert, S., (2019). Ethics of smart farming: current questions and directions for responsible innovation towards the future. Njas Wageningen J. Life Sci. https://doi.org/10.1016/j.njas.2019.01.001.
Van der Jagt, A.P.N., Raven, R., Dorst, H., Runhaar, H., (2019). Nature-based innovation systems. Environ. Innov. Soc. Transit. https://doi.org/10.1016/j.eist.2019.09.005. In press.
Van Hulst, F., Ellis, R., Prager, K., Msika, J., (2020). Using coconstructed mental models to understand stakeholder perspectives on agroecology. Int. J. Agric. Sustainability. https://doi.org/10.1080/14735903.2020.1743553.
Vasconez, J.P., Kantor, G.A., Auat Cheein, F.A., (2019). Human-robot interaction in agriculture: a survey and current challenges. Biosyst. Eng. 179, 35–48.
Vik, J., Stræte, E.P., Hansen, B.G., Nærland, T., (2019). The political robot – the structural consequences of automated milking systems (AMS) in Norway. Njas Wageningen J. Life Sci. 100305. https://doi.org/10.1016/j.njas.2019.100305.
Voon, S.L., An, J., Wong, G., Zhang, Y., Chua, C.K., (2019). 3D food printing: a categorized review of inks and their development. Virtual Phys. Prototype. 14, 203–218.
Wiseman, L., Sanderson, J., Zhang, A., Jakku, E., (2019). Farmers and their data: an examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming. Njas Wageningen J. Life Sci. https://doi.org/10.1016/j. njas.2019.04.007.
Wolf, S. A., & Buttel, F. H. (1996). The political economy of precision farming. American Journal of Agricultural Economics, 78(5), 1269-1274.
Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.J., (2017). Big data in smart farming – a review. Agric. Syst. 153, 69–80.
Wolfert, S., Verdouw, C., van Wassenaer, L., Dolfsma, W., & Klerkx, L. (2023). Digital innovation ecosystems in agri-food: design principles and organizational framework. Agricultural Systems, 204, 103558.
Yeates, J. W. (2017). How good? Ethical criteria for a ‘Good Life ’ for farm animals. Journal of Agricultural and Environmental Ethics, 30, 23-35
Zhang, D., Wei, B., (2017). Robotics and Mechatronics for Agriculture. CRC Press, Boca Raton.
Zhao, G., Liu, S., Lopez, C., Lu, H., Elgueta, S., Chen, H., Boshkoska, B.M., (2019). Blockchain technology in agrifood value chain management: a synthesis of applications, challenges and future research directions. Comput. Ind. 109, 83–99
Published
2024-05-29
How to Cite
Hassim, O. A., Osman, I., Awal, A., & Amin, F. M. (2024). Navigating the Path to Equitable and Sustainable Digital Agriculture among Small Farmers in Malaysia: A Comprehensive Review. Information Management and Business Review, 16(2(I)S), 173-188. https://doi.org/10.22610/imbr.v16i2(I)S.3795
Section
Research Paper