Enhancing Supply Chain Efficiency: Implementation of Vendor Managed Inventory in Inventory Routing Problem

  • Afif Zuhri Muhammad Khodri Harahap Universiti Teknologi MARA (UiTM) Cawangan Terengganu Kampus Dungun
  • Ahmad Suffian Mohd Zahari Universiti Teknologi MARA (UiTM) Cawangan Terengganu Kampus Dungun
  • Noor Malinjasari Ali Universiti Teknologi MARA (UiTM) Cawangan Terengganu Kampus Dungun
  • Rabiatul Adawiyah Ma'arof Universiti Teknologi MARA (UiTM) Cawangan Terengganu Kampus Dungun
Keywords: vendor-managed inventory, inventory routing problem, supply chain efficiency, optimization

Abstract

This article explores the integration of Vendor Managed Inventory (VMI) into the framework of the Inventory Routing Problem (IRP) as a strategic approach to enhance supply chain efficiency. VMI involves suppliers taking an active role in managing customer inventory levels and fostering real-time communication and data sharing. The Inventory Routing Problem addresses the challenge of optimizing delivery routes while simultaneously managing inventory levels. The benefits of implementing VMI in IRP include improved demand forecasting, reduced stockouts and overstock situations, and optimized routing and transportation. The study applies a method that strategically integrates Vendor Managed Inventory (VMI) into the Inventory Routing Problem (IRP) framework, utilizing real-time data sharing and optimized routing algorithms to enhance supply chain efficiency. This approach is evaluated through research findings highlighting its benefits and implementation challenges. Thus, we discuss the potential advantages and challenges associated with this integration. While VMI in IRP offers substantial benefits, data security, cultural shifts, and IT system integration must be addressed for successful implementation. This article provides insights into the promising synergy between VMI and IRP, offering organizations a competitive edge in the dynamic supply chain management landscape.

Downloads

Download data is not yet available.

References

Akindote, O. J. (2023). Digital Era: Navigating VMI and Supply Chain for Sustainable Success. 33–39. https://doi.org/10.5121/csit.2023.130904 DOI: https://doi.org/10.5121/csit.2023.130904

Aloui, A., Hamani, N., & Delahoche, L. (2021). An integrated optimization approach using a collaborative strategy for sustainable cities freight transportation: A Case study. Sustainable Cities and Society, 75(August), 103331. https://doi.org/10.1016/j.scs.2021.103331 DOI: https://doi.org/10.1016/j.scs.2021.103331

Archetti, C., & Speranza, M. G. (2016). The inventory routing problem: The value of integration. International Transactions in Operational Research, 23(3), 393–407. https://doi.org/10.1111/itor.12226 DOI: https://doi.org/10.1111/itor.12226

Barbosa-Povoa, A. P., & Pinto, J. M. (2020). Process supply chains: Perspectives from academia and industry. Computers and Chemical Engineering, 132. https://doi.org/10.1016/j.compchemeng.2019.106606 DOI: https://doi.org/10.1016/j.compchemeng.2019.106606

Bardeji, S. F., Saghih, A. M. F., & Mirghaderi, S. H. (2022). Multi-Objective Inventory and Routing Model for a Multiproduct and Multi-Period Problem of Veterinary Drugs. International Journal of Industrial Engineering : Theory Applications and Practice, 29(4), 464–486. https://doi.org/10.23055/ijietap.2022.29.4.6711

Bell, W. J., Dalberto, L. M., Fisher, M. L., Green?eld, A. J., Jaikumar, R., Kedia, P., Mack, R. G., & Prutzman, P. J. (1983). Improving the distribution of industrial gases with an on-line computerized routing and schedulingoptimizer. Interfaces, 13, 4–23 DOI: https://doi.org/10.1287/inte.13.6.4

de Maio, A., & Laganà, D. (2020). The effectiveness of Vendor Managed Inventory in the last-mile delivery: An industrial application. Procedia Manufacturing, 42, 462–466. https://doi.org/10.1016/j.promfg.2020.02.047 DOI: https://doi.org/10.1016/j.promfg.2020.02.047

Guimarães, T., C. Coelho, L., M. Schenekemberg, C., & T. Scarpin, C. (2019). The two-echelon multi-depot inventory-routing problem. Computers and Operations Research, 101, 220–233. https://doi.org/10.1016/j.cor.2018.07.024 DOI: https://doi.org/10.1016/j.cor.2018.07.024

Harahap, A. Z. M. K., & Rahim, M. K. I. A. (2017). Deterministic inventory routing problem (DIRP): A literature review. International Journal of Supply Chain Management, 6(4), 284–288.

Huang, S. H., & Lin, P. C. (2010). A modified ant colony optimization algorithm for multi-item inventory routing problems with demand uncertainty. Transportation Research Part E: Logistics and Transportation Review, 46(5), 598–611. https://doi.org/10.1016/j.tre.2010.01.006 DOI: https://doi.org/10.1016/j.tre.2010.01.006

Ibrahim, N., Sobry, S. C., Ismail, N. Z. F., & Harahap, A. Z. M. K. (2023). Supply Chain Risks, Green Supply Chain Management Practices, and Organizational Performance: A Research Direction. Information Management and Business Review, 15(3(SI)), 429–438. https://doi.org/10.22610/imbr.v15i3(si).3499 DOI: https://doi.org/10.22610/imbr.v15i3(SI).3499

Jabir, E., Panicker, V. V., & Sridharan, R. (2015). Multi-objective Optimization Model for a Green Vehicle Routing Problem. Procedia - Social and Behavioral Sciences, 189, 33–39. https://doi.org/10.1016/j.sbspro.2015.03.189 DOI: https://doi.org/10.1016/j.sbspro.2015.03.189

Kamarul, M., Abdul, I., Iteng, R., & Ahmad, M. A. (2017). A Deterministic Inventory Routing Model for the Single-period Problems with Finite Time Horizon. 6(2), 196–201.

Kamarul, M., Abdul, I., Zhong, Y., Aghezzaf, E., & Aouam, T. (2014). Modeling and solving the multiperiod inventory-routing problem with stochastic stationary. 52(14), 4351–4363. DOI: https://doi.org/10.1080/00207543.2014.883470

Karimi, M., Khademi-Zare, H., Zare-Mehrjerdi, Y., & Bagher Fakhrzad, M. (2022). Optimizing service level, price, and inventory decisions for a supply chain with retailers’ competition and cooperation under the VMI strategy. RAIRO - Operations Research, 56(2), 1051–1078. https://doi.org/10.1051/ro/2022039 DOI: https://doi.org/10.1051/ro/2022039

Mohammad, R. (2019). Inventory routing problem under dynamic, uncertain, and green considerations Mohammad Rahimi To cite this version : HAL Id : tel-02001046 Mohammad RAHIMI Inventory Routing Problem under Dynamic, Uncertain and Green Considerations.

Panfilova, E., Dzenzeliuk, N., Domnina, O., Morgunova, N., & Zatsarinnaya, E. (2020). The impact of cost allocation on key decisions of supply chain participants. International Journal of Supply Chain Management, 9(1), 552–558.

Rahim, M. K. I. A., Nadarajan, S. S. R., & Ahmad, M. A. (2017). Solving the single-period inventory routing problem with the deterministic approach. Journal of Engineering Science and Technology, 12(Special Issue 4), 165–175.

Rodrigues, F., Agra, A., Christiansen, M., Hvattum, L. M., & Requejo, C. (2019). Comparing techniques for modeling uncertainty in a maritime inventory routing problem. European Journal of Operational Research, 277(3), 831–845. https://doi.org/10.1016/j.ejor.2019.03.015 DOI: https://doi.org/10.1016/j.ejor.2019.03.015

Rohmer, S. U. K., Claassen, G. D. H., & Laporte, G. (2019). A two-echelon inventory routing problem for perishable products. Computers and Operations Research, 107, 156–172. https://doi.org/10.1016/j.cor.2019.03.015 DOI: https://doi.org/10.1016/j.cor.2019.03.015

Schuster Puga, M., & Tancrez, J. S. (2017). A heuristic algorithm for solving large location–inventory problems with demand uncertainty. European Journal of Operational Research, 259(2), 413–423. https://doi.org/10.1016/j.ejor.2016.10.037 DOI: https://doi.org/10.1016/j.ejor.2016.10.037

Soysal, M., Koç, Ç., Çimen, M., & ?bi?, M. (2023). Managing returnable transport items in a vendor-managed inventory system. Socio-Economic Planning Sciences, 86(December 2022). https://doi.org/10.1016/j.seps.2022.101504 DOI: https://doi.org/10.1016/j.seps.2022.101504

Tirkolaee, E. B., Sadeghi, S., Mooseloo, F. M., Vandchali, H. R., & Aeini, S. (2021). Application of Machine Learning in Supply Chain Management: A Comprehensive Overview of the Main Areas. Mathematical Problems in Engineering, 2021(Ml). https://doi.org/10.1155/2021/1476043 DOI: https://doi.org/10.1155/2021/1476043

Upadhyay, V. V., Tewari, P. C., & Gupta, A. (2013). Evaluation of Vendor Managed Inventory Elements in Manufacturing Sector Using ANOVA Technique. X(2).

Yadollahi, E., Aghezzaf, E. H., Walraevens, J., & Raa, B. (2019). Inventory Routing Problem with Non-stationary Stochastic Demands. Proceedings of the International Conference on Informatics in Control, Automation and Robotics, 2(Icinco), 658–665. https://doi.org/10.5220/0007948506580665 DOI: https://doi.org/10.5220/0007948506580665

Zhong, Y., & Aghezzaf, E.-H. (2012). Modeling and Solving the Multi-Period Inventory Routing Problem With Constant Demand Rates. Optimization and Simulation, 1987.

Published
2024-05-29
How to Cite
Harahap, A. Z. M. K., Mohd Zahari, A. S., Ali, N. M., & Ma’arof, R. A. (2024). Enhancing Supply Chain Efficiency: Implementation of Vendor Managed Inventory in Inventory Routing Problem. Information Management and Business Review, 16(2(I)S), 212-218. https://doi.org/10.22610/imbr.v16i2(I)S.3761
Section
Research Paper