A Study of Intercept Adjusted Markov Switching Vector Autoregressive Model in Economic Time Series Data
Abstract
Commodity price always related to the movement of stock market index. However real economic time series data always exhibit nonlinear properties such as structural change, jumps or break in the series through time. Therefore, linear time series models are no longer suitable and Markov Switching Vector Autoregressive models which able to study the asymmetry and regime switching behavior of the data are used in the study. Intercept adjusted Markov Switching Vector Autoregressive (MSI-VAR) model is discuss and applied in the study to capture the smooth transition of the stock index changes from recession state to growth state. Results found that the dramatically changes from one state to another state are continuous smooth transition in both regimes. In addition, the 1-step prediction probability for the two regime Markov Switching model which act as the filtered probability to the actual probability of the variables is converged to the actual probability when undergo an intercept adjusted after a shift. This prove that MSI-VAR model is suitable to use in examine the changes of the economic model and able to provide significance, valid and reliable results. While oil price and gold price also proved that as a factor in affecting the stock exchange.Downloads
Copyright (c) 2013 Information Management and Business Review
This work is licensed under a Creative Commons Attribution 4.0 International License.
Author (s) should affirm that the material has not been published previously. It has not been submitted and it is not under consideration by any other journal. At the same time author (s) need to execute a publication permission agreement to assume the responsibility of the submitted content and any omissions and errors therein. After submission of revised paper in the light of suggestions of the reviewers, the editorial team edits and formats manuscripts to bring uniformity and standardization in published material.
This work will be licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) and under condition of the license, users are free to read, copy, remix, transform, redistribute, download, print, search or link to the full texts of articles and even build upon their work as long as they credit the author for the original work. Moreover, as per journal policy author (s) hold and retain copyrights without any restrictions.