Measuring Students’ Performance with Data Mining
Abstract
Understanding the true reasons behind students’ failure, and bringing preventive measures to this issue at early stages are invaluable in the educational learning process. Preventing problems such as language deficiency or misclassification of the students in the appropriate academic levels is primordial for any educational institution. Many factors influence the learning process of the students, such as the demographic characteristics, educational background as well as language barrier. This work highlights the most preponderant factors affecting students’ advancement in the learning process and provides support to academic administrators. It uses some of state of the art classification and regression algorithms in the application domain of predicting students’ progress. Datasets were filtered and trained using predictive algorithms. It is shown that Science learning and English language skills are highly correlated. Datasets are not always suitable for data mining unless it is preprocessed and well adapted to the context being studied. A tool has been developed to preprocess the data provided that feeds into Weka Data Mining Software to profile students’ performance.Downloads
Copyright (c) 2012 Journal of Education and Vocational Research
This work is licensed under a Creative Commons Attribution 4.0 International License.
Author (s) should affirm that the material has not been published previously. It has not been submitted and it is not under consideration by any other journal. At the same time author (s) need to execute a publication permission agreement to assume the responsibility of the submitted content and any omissions and errors therein. After submission of a revised paper, the editorial team edits and formats manuscripts to bring uniformity and standardization in published material.
This work will be licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) and under condition of the license, users are free to read, copy, remix, transform, redistribute, download, print, search or link to the full texts of articles and even build upon their work as long as they credit the author for the original work. Moreover, as per journal policy author (s) hold and retain copyrights without any restrictions.