A Simulation Approach to Determine the Probability of Demand during Lead-Time When Demand Distributed Normal and Lead-Time Distributed Gamma
Abstract
Globalization and advances in information and production technologies make inventory management can be very difficult even for organizations with simple structures. The complexities of inventory management increase in multi-stage networks, where inventory appears in multiple tiers of locations. Due to massive practical applications in the reality of the world, an efficient inventory system policy whether single location or multi-stage location will avoid falling into overstock inventory or under stock inventory. However, the optimality of inventory and allocation policies in a supply chain is still unknown for most types of multi-stage systems. Hence, this paper aims to determine the probability distribution function of demand during lead-time by using a simulation model when the demand distributed normal and the lead-time distributed gamma. The simulation model showed a new probability distribution function of demand during lead-time in the considered inventory system, which is, Generalized Gamma distribution with 4 parameters. This probability distribution function makes the mathematical expression more difficult to build the inventory model especially in multistage or multi-echelon inventory model.Downloads
Copyright (c) 2014 Journal of Economics and Behavioral Studies
This work is licensed under a Creative Commons Attribution 4.0 International License.
Author (s) should affirm that the material has not been published previously. It has not been submitted and it is not under consideration by any other journal. At the same time author (s) need to execute a publication permission agreement to assume the responsibility of the submitted content and any omissions and errors therein. After submission of a revised paper in the light of suggestions of the reviewers, editorial team edits and formats manuscripts to bring uniformity and standardization in published material.
This work will be licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) and under condition of the license, users are free to read, copy, remix, transform, redistribute, download, print, search or link to the full texts of articles and even build upon their work as long as they credit the author for the original work. Moreover, as per journal policy author (s) hold and retain copyrights without any restrictions.