A Review of Mouse-Tracking Applications in Economic Studies

  • Geran Tian University of International Business and Economics, Beijing, Cornell University, Ithaca, New York, USA https://orcid.org/0000-0003-3850-8179
  • Weixing Wu University of International Business and Economics, Beijing
Keywords: Mouse-tracking, Behavioral decision-making, Experimental economics, Cursor trajectory, Game theory.

Abstract

Since mouse-tracking paradigm came under the spotlight two decades ago, by providing mouse cursor trajectories, it has been applied by behavioral scientists to a variety of topics to help understand real-time psychological state when people are faced with multiple choices. In this article, we provide a comprehensive, documentation of experimental economics studies with mouse-tracking paradigm. Among these studies, some focus on measuring choice uncertainty including subject uncertainty, temporal uncertainty, and probabilistic uncertainty; the rest are concerned with economic games including bargaining games and social dilemma games. Why and how these works employ mouse-tracking technique in their experiments is elaborated in detail. Finally, limitations of mouse-tracking paradigm are discussed, and research opportunities are proposed. Basic know-hows are appended as a general guide for interested readers.

Downloads

Download data is not yet available.

References

Bodily, R., Harris, S., Jenkins, J., Larsen, R., Sandberg, D. & Stokes, S. (2015). A Multi-Experimental Examination of Analyzing Mouse Cursor Trajectories to Gauge Subject Uncertainty. PLoS One, 8(2).
Bruhn, P. (2013). Emergence of spontaneous anticipatory hand movements in a probabilistic environment. Advances in Cognitive Psychology, 9(2).
Callen, M. & Thompson, M. (2019). Heat Map Tracker. Retrieved from http://heatmaptracker.com
Calluso, C., Tosoni, A., Pezzulo, G., Spadone, S. & Committeri, G. (2015). Interindividual variability in functional connectivity as long-term correlate of temporal discounting. PLoS One, 10(3).
Camerer, C. F., Johnson, E. J., Rymon, T. & Sen, S. (1993). Cognition and Framing in Sequential Bargaining for Gains and Losses: Cambridge: MIT Press.
Cary, N. C. (1989). SAS/STAT user’s guide. In S. Institute (Ed.).
Cheng, J. & González-Vallejo, C. (2017). Action Dynamics in Intertemporal Choice Reveal Different Facets of Decision Process. Journal of Behavioral Decision Making, 30, 107-122.
Clicktale. (n.d.). Retrieved from www.clicktale.com
Clicktale User Manual. (2010). In (0.5 ed.).
Costa-Gomes, M., Crawford, V. P. & Broseta, B. (2001). Cognition and behavior in normal-form games: an experimental study. Econometrica, 69(5), 1193-1235.
Costa-Gomes, M. A. & Crawford, V. P. (2006). Cognition and behavior in two-person guessing games: An experimental study. American Economic Review, 96, 1737–1768.
Dale, R. & Duran, N. D. (2011). The cognitive dynamics of negated sentence verification. Cogn Sci, 35(5), 983-996.
Dale, R., Roche, J., Snyder, K. & McCall, R. (2008). Exploring action dynamics as an index of paired-associate learning. PLoS One, 3(3), e1728.
Dehaene, S., Bossini, S. & Giraux, P. (1993). The Mental Representation of Parity and Number Magnitude. Journal of Experimental Psychology: General, 122(3), 371-396.
Dijkstra, M. (2013). The Diagnosis of Self-Efficacy Using Mouse And Keyboard Input. (Master thesis). Utrecht University,
Dshemuchadse, M., Scherbaum, S. & Goschke, T. (2013). How decisions emerge: Action dynamics in intertemporal decision making. Journal of Experimental Psychology: General, 142(1), 93-100.
Ferreira, S., Arroyo, E., Tarrago, R. & Blat, J. (2010). Applying Mouse Tracking to Investigate Patterns of Mouse Movements in Web Forms. Universitat Pompeu Fabra,
Fischer, M. H. & Hartmann, M. (2014). Pushing forward in embodied cognition: may we mouse the mathematical mind. Frontiers in Psychology, 5(1315).
Franco-Watkins, A. M. & Johnson, J. G. (2011). Decision moving window: Using interactive eye tracking to examine decision processes. Behavior Research Methods, 43(3), 853-863.
Freeman, J. B. & Ambady, N. (2010). MouseTracker: software for studying real-time mental processing using a computer mouse-tracking method. Behav Res Methods, 42(1), 226-241.
Freeman, J. B., Ambady, N., Rule, N. O. & Johnson, K. L. (2008). Will a category cue attract you? Motor output reveals dynamic competition across person construal. J Exp Psychol Gen, 137(4), 673-690.
Freeman, J. B. & Dale, R. (2013). Assessing bimodality to detect the presence of a dual cognitive process. Behav Res Methods, 45(1), 83-97.
Freeman, J. B., Dale, R. & Farmer, T. A. (2011). Hand in motion reveals mind in motion. Frontiers in Psychology, 2(59).
Gabaix, X., Laibson, D. I., Moloche, G. & Weinberg, S. E. (2003). The Allocation of Attention: Theory and Evidence. SSRN Electronic Journal. doi:doi:10.2139/ssrn.444840
Goodale, M. A., Pelisson, D. & Prablanc, C. (1986). Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature, 320, 748–750.
Henik, A. & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10(4), 389-395.
Hindy, N. C., Hamilton, R., Houghtling, A. S., Coslett, H. B. & Thompson-Schill, S. L. (2009). Computer-mouse tracking reveals TMS disruptions of prefrontal function during semantic retrieval. J Neurophysiol, 102(6), 3405-3413.
Johansen, S. A., San Agustin, J., Skovsgaard, H., Hansen, J. P. & Tall, M. (2011). Low cost vs. high-end eye tracking for usability testing. Paper presented at the Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems - CHI EA '11.
Kieslich, P. J. & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-tracking package. Behav Res Methods, 49(5), 1652-1667.
Kieslich, P. J. & Hilbig, B. E. (2014). Cognitive conflict in social dilemmas: An analysis of response dynamics. Judgment and Decision Making, 9(6), 510–522.
Koop, G. J. & Johnson, J. G. (2011). Response Dynamics: How continuous response monitoring can test modern process models. Judgment and Decision Making, 6(8).
Lohse, G. & Johnson, E. (1996). A comparison of two process tracing methods for choice tasks. Paper presented at the Proceedings of HICSS-29: 29th Hawaii International Conference on System Sciences.
Lucky Orange. (n.d.). Retrieved from https://www.luckyorange.com
Magnuson, J. S. (2005). Moving hand reveals dynamics of thought. Paper presented at the Proceedings of the National Academy of Sciences.
Mouseflow. (n.d.). Retrieved from https://mouseflow.com
Myrseth, K. O. R. & Wollbrant, C. (2015). Less cognitive conflict does not imply choice of the default option: Commentary on Kieslich and Hilbig (2014). Judgement and Decision Making, 10(3), 277-279.
Navalpakkam, V., Jentzsch, L., Sayres, R., Ravi, S., Ahmed, A. & Smola, A. (2013). Measurement and modeling of eye-mouse behavior in presence of nonlinear page layouts. Paper presented at the WWW.
Nuerk, H., Iversen, W. & Willmes, K. (2004). Notational Modulation of the SNARC and the MARC (Linguistic Markedness of Response Codes) Effect. The Quarterly Journal of Experimental Psychology, 57(5), 835-863.
O'Hora, D., Carey, R., Kervick, A., Crowley, D. & Dabrowski, M. (2016). Decisions in Motion: Decision Dynamics during Intertemporal Choice reflect Subjective Evaluation of Delayed Rewards. Sci Rep, 6, 20740.
Rubinstein, A. (2013). Response time and decision making: An experimental study. Judgement and Decision Making, 8(5), 540-551.
Seithe, M., Morina, J. & Glockner, A. (2016). Bonn eXperimental System (BoXS): An open-source platform for interactive experiments in psychology and economics. Behav Res Methods, 48(4), 1454-1475.
Spivey, M. J. & Dale, R. (2006). Continuous dynamics in real-time cognition. Current Directions in Psychological Science, 15(5), 207-211.
Stillman, P. E., Shen, X. & Ferguson, M. J. (2018). How Mouse-tracking Can Advance Social Cognitive Theory. Trends in Cognitive Sciences, 22(6), 531-543.
Tower-Richardi, S. M., Brunyé, T. T., Gagnon, S. A., Mahoney, C. R. & Taylor, H. A. (2012). Abstract Spatial Concept Priming Dynamically Influences Real-World Actions. Frontiers in Psychology.
Tversky, A. & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90, 293–315.
Tversky, A. & Kahneman, D. (1986). Rational Choice and the Framing of Decisions. The Journal of Business, 59, 251–278.
Tzafilkou, K., Protogeros, N. & Yakinthos, C. (2014). Mouse Tracking for Web Marketing: Enhancing User Experience in Web Application Software by Measuring Self-Efficacy and Hesitation Levels. International Journal of Strategic Innovative Marketing.
Wel, R. P., Sebanz, N. & Knoblich, G. (2014). Do people automatically track others' beliefs? Evidence from a continuous measure. Cognition, 130(1), 128-133.
Willemsen, M. C. & Johnson, E. J. (n.d.). MouselabWEB. Retrieved from http://www.mouselabweb.org/
Zgonnikov, A., Aleni, A., Piiroinen, P. T., O'Hora, D. & di Bernardo, M. (2017). Decision landscapes: visualizing mouse-tracking data. Royal Society Open Science, 4(11).
Published
2020-02-08
How to Cite
Tian, G., & Wu, W. (2020). A Review of Mouse-Tracking Applications in Economic Studies. Journal of Economics and Behavioral Studies, 11(6(J), 1-9. https://doi.org/10.22610/jebs.v11i6(J).3000
Section
Research Paper