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Abstract: In most cases, financial variables are explained by leptokurtic distribution and often fail the 
assumption of normal distribution. This paper sought to explore the robustness of GARCH–type models in 
forecasting inflation volatility using quarterly time series data spanning 2002 to 2014. The data was sourced 
from the South African Reserve Bank database. SAS version 9.3 was used to generate the results. The initial 
analyses of data confirmed non-linearity, hereroscedasticity and non-stationarity in the series. Differencing 
was imposed in a log transformed series to induce stationarity. Further findings confirmed that 
𝐴𝑅 (1)_𝐼𝐺𝐴𝑅𝐶𝐻 (1, 1)model suggested a high degree persistent in the conditional volatility of the series. 
However, the𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)model was found to be more robust in forecasting volatility effects than 
the 𝐴𝑅 (1)_𝐼𝐺𝐴𝑅𝐶𝐻 (1, 1) and 𝐴𝑅 (1)_𝐺𝐽𝑅 − 𝐺𝐴𝑅𝐶𝐻 (2, 1)models. This model confirmed that inflation rates 
in South Africa exhibits the stylised characteristics such as volatility clustering, leptokurtosis and asymmetry 
effects. These findings may be very useful to the industry and scholars who wish to apply models that capture 
heteroscedastic and non-linear errors. The findings may also benefit policy makers and may be referred to 
when embarking on strategies in-line with inflation rate. 
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1. Introduction 
 
The most commonly used statistical model is regression analysis. The standard assumptions associated with 
this model are, however, violated when applied to time series data. The problem of autocorrelation is 
common in many time series data and this could be taken care of only when the correct order of lags is 
chosen. Literature suggests several methods to take care of autocorrelation errors in a model. This study uses 
the univariate models which have the capacity to take care of these problems. The proposed methods are 
further effective when applied to data which exhibit heteroscedastic and non-linear errors. These 
assumptions may in many practical applications not be realistic. Time series data is collected over certain 
intervals, short time or long time intervals causing the associated errors to be time dependent and correlated. 
It is thus important to use a model that incorporate the possibility of non-constant error variance known a 
heteroscedasticity model. In the main, this study presents generalized autoregressive conditional 
heteroscedasticity (GARCH) models introduced by Bollerslev (1986) and explores their predictive power in a 
series containing heteroscedastic errors. The methods are applied in inflation data of South Africa. Inflation 
measures the persistent and continuous rise in the general price levels in an economy. Webster (2000) 
describes inflation as the persistent increase in the level of consumer prices or persistent decline in the 
purchasing power of money. This is one economic factor that affects all other levels of the economy, and as a 
result it is the duty of every country to have effective control this sector. Suleman and Sarpong (2012) 
highlighted that most departments use inflation rates as basis of argument when debating on the state of the 
economy. Still on the same breadth, David (2001) described inflation as one of the main focus of economic 
policy in the entire world. Accurate future forecasts of inflation must be available so that they are 
incorporated in decisions affecting other sectors of the economy especially those associated with business 
transactions. The findings of this study would further aid in efficient allocation of economic resources in the 
country. This would also boost the rate of economic growth by encouraging savings to finance investments by 
both the government and households. 
 



135 
 

The empirical methods proposed uses the univariate time series analysis which captures both the present 
and past values of a unit series. The methods also have the ability to capture the volatility effects and can 
accommodate the dynamics of conditional heteroscedasticity and non-linearity. It is important to handle 
heteroscedasticity with appropriate non-constant variance models since it has effects on the accuracy of 
forecasts of confidence limits (Amos, 2010). Various models from the GARCH family would be explored and 
the one that passes the diagnostic tests will be considered for further analyses. The empirical findings would 
be applicable to practitioners in the industry, policy makers in the government, businesses and the entire 
community of South Africa. Better planning would be done once the forecasts are known. Scholars would also 
benefit from this study as the results would contribute by either closing or bridging a gap in existing 
literature. The results would also serve as a basis for further studies to all interested parties. 
 
There is a dearth of literature which reports on studies that explored the ability of GARCH type models to 
estimate inflation volatility in the context of South Africa. Most of the studies about inflation applied the Box-
Jenkins autoregressive moving average (ARMA) models. There is a gap in literature in the context of South 
Africa on studies that modelled and forecasted inflation volatility with GARCH-type models. To the best of my 
knowledge, the only study that modelled and forested inflation volatility is one conducted by Amos (2010). 
This study applied 𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 0) (0, 1, 1) and 𝐺𝐴𝑅𝐶𝐻 (1, 1) models on inflation rates of South Africa. Even 
though the two models were found to be good predictors of inflation rate, the 𝐺𝐴𝑅𝐶𝐻 (1, 1)yielded least 
forecast errors and proved to be superior to the SARIMA model. This is a confirmation that the 𝐺𝐴𝑅𝐶𝐻 (1, 1) 
model is robust in producing forecasts of inflation rates and capturing variations in the data; the task which a 
SARIMA model failed to fulfil. Traditional time series models such as SARIMA assumes constant variances in 
the series. Conversely, most of the economic and financial series to a large extent exhibit non constant 
conditional variance (are heteroscedastic) and the analysis of such data is better handled with the novel 
GARCH-type models. Hence, the current study proposes and explores the GARCH-type framework to model 
and forecast inflation volatility.  
 
A similar study to Amos (2010) was undertaken in Nigeria by Osarumwense and Waziri (2013). This study 
explored the theory of univariate non-linear time series and applied both ARIMA and GARCH models to non-
stationary series. One of the conditions under which ARIMA can perform very well besides the linearity and 
constant variance is when the data used does not have unit root. The authors used these models under wrong 
conditions since they disregarded the most important assumptions. However, both models passed the battery 
of diagnostic tests and 𝐺𝐴𝑅𝐶𝐻 (1, 0)_𝐴𝑅𝐼𝑀𝐴 (1, 0) were found to be sufficient to estimate Nigeria’s inflation 
volatility for the periodJanuary 2012 to December 2013. Other empirical studies that considered the use of 
GARCH models in the area of inflation were carried out in Ghana such as those by Alnaa and Ahiakpor (2011) 
and Suleman and Sarpong (2012). These studies used both seasonal and non-seasonal models that assume 
constant variance just like Amos (2010) and disregarded the issue of conditional heteroscedasticity of the 
series in inflation data. To prove that the GARCH models are suitable for modelling the series with 
heteroscedastic errors, the comparative study by Awogbemi and Oluwaseyi (2011) favoured the GARCH 
model over the conventional ARIMA model. Similarly, Nortey et al. (2014) compared the performance of 
autoregressive conditional heteroscedasticity (ARCH), GARCH and exponential GARCH (EGARCH) models 
proposed by Nelson (1991) in modelling monthly rates of inflation in Ghana. The findings of this study 
showed that the 𝐸𝐺𝐴𝑅𝐶𝐻 (1, 2) model with a mean equation of ARIMA (3, 1, 2)_(0, 0, 0)12 was appropriate 
formodelling Ghana’s monthly rates of inflation. 
 
One study that explored the varying volatility dynamics of inflation series was conducted by Perniaag et al. 
(2004) in Malaysia. Though this study did not consider variety of GARCH-types, a comparison was made 
between the GARCH and the exponential GARCH (EGARCH) models. The latter is not only suitable for 
capturing heteroscedastic errors; it is further used to capture the stochastic variations and asymmetries in 
the data. Though the diagnostic tests of these models provided significant results, EGARCH was chosen as the 
best model due to the nature of inflation data which is explained by highly irregular fluctuations. This shows 
that GARCH-type models have the ability to capture and reveal varying characteristics associated with time 
series data. Su (2010) studied financial volatility in Ghana using the GARCH and EGARCH models. Empirically, 
the results suggested EGARCH model as a good model of sample data than the ordinary GARCH model. 
EGARCH in this study modelled the volatility of Chinese stock returns better than the GARCH. The GARCH-
type models are also useful time varying models in capturing the heteroscedastic errors in higher order levels 
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such as the bivariate and multivariate time series. Several studies applied these models to study the effect of 
other financial and/or economic variables on inflation rates of different countries. Such studies include those 
by Igogo (2010) who in the first place used the 𝐺𝐴𝑅𝐶𝐻 (1, 1) model and realised such model violates the non-
negativity condition. To remedy the problem, 𝐸𝐺𝐴𝑅𝐶𝐻 (1, 1) model was employed and was found to be 
adequate measure of volatility in the series. 
 
Likewise, Chong et al. (2002) applied the GARCH and the GARCH-in-the-mean type models in their study on 
exchange rate volatility. Just like the inflation rate, exchange rate share similar properties of conditional 
variance and non stationarity and as such same kind of time series models are applicable to such data sets. 
The findings of this study did not favour the null hypothesis of constant variances in the exchange rate 
implying the applicability of the GARCH-type models on the series. Consequently, the GARCH-in-the-mean 
was favoured over the GARCH model as it modelled heteroscedasticity of daily exchange rates better. 
Mokoma and Moroke (2015) also applied the multivariate ARCH approach to study exchange rate volatility. 
Three other financial variables such as the interest rates, inflation rates and GDP were used as determinants 
of exchange rate volatility in their study. The 𝐴𝑅𝐶𝐻 (1) was chosen over the 𝐴𝑅𝐶𝐻 (2) model since the 
former proved to reveal volatility of the series much better than the latter. Another study that applied GARCH 
models to inflation and inflation uncertainty relationship include one by Jehovanes (2007). It is clear 
according to evidence recorded from the literature reviewed that the GARCH models are suitable to model 
and forecast time series data with conditional variance. EGARCH model appears to be the most favourable 
model to use in modelling data with heteroscedastic errors. The exploration of these models will allow the 
researcher to suggest an optimal GARCH-type model from the list and use it to produce future forecasts of 
inflation rates in the context of South Africa. 
 
2. Methodology 
 
Data: The data used in this study comprises50 quarterly observations of the South African inflation 
expectation of the current year. These data covers the period from the third quarter of 2002 to the fourth 
quarter of 2014. The Consumer Price Index (CPI) is published by the Statistics South Africa and the South 
African Reserve Bank. Due to the nature of these data, the stochastic properties are expected to be non-
stationary. The stationarity of the series is confirmed by assessing the first difference of the log transformed 
series. The desire is to have the stochastic properties of the series oscillating around the zero line. If this is 
not a case, the series is non-stationary. To convert the prices to returns, logarithmic transformations will be 
used. The logarithmic return is based upon the following mathematical definition; 
 

𝑟𝑡 = 𝑙𝑛
𝑃𝑡

𝑃𝑡−1
,      [1] 

 
Where 𝑟𝑡the return is for any time, 𝑡, 𝑃𝑡  is the CPI value at time, 𝑡 and 𝑃𝑡−1  is the CPI value at time, 𝑡 − 1.The 
Statistical Analysis Software (SAS) version 9.3, registered to the SAS Institute Inc. Cary, NC, USA will be used 
for data analysis 
 
Model identification and selection: Most econometric models, especially those utilising the ordinary least 
square method, are built on the assumption of constant variance. However, supporters of the efficient market 
hypothesis claim that financial data are random and as such makes any speculation based on past information 
fruitless (Frimpong and Oteng-Abayie, 2006). In essence, the basic model for estimating volatility using the 
ordinary least squares method is the naiverandom walk model which is analogous to the standard regression 
model assuming uncorrelated error given as; 
 

𝑌𝑡 = 𝜇 + 𝑋′
𝑡
𝛽 + 𝜀𝑡 ,     [2] 

 
Where  𝜇 is a mean value which is expected to be insignificantly different from zero, 𝜀𝑡 = 𝑛𝑡  and 𝑛𝑡  are 
uncorrelated but have non-constant variance. Following Engle (1982), assume that the error term can be 
modeled as; 
 

𝑛𝑡 = 𝜎𝑡𝑒𝑡 ,      [3] 
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Where 𝑒𝑡  are identically and independently distributed(𝑖. 𝑖. 𝑑. ) random variables with mean 0 and variance 1, 
independent of past realizations of 𝑛𝑡−𝑖 , and; 
 

𝜎𝑖
2 = 𝜃0 + 𝜃1𝑛𝑡−1

2 + ⋯+ 𝜃𝑠𝑛𝑡−𝑠
2 .    [4] 

 
Given all the information up to time (𝑡 − 1), the conditional variance of the 𝑛𝑡  becomes; 
 

𝑉𝑎𝑟𝑡−1 𝑛𝑡 = 𝐸𝑡−1 𝑛𝑡
2 = 𝐸 𝑛𝑡

2|𝑛𝑡−1,… = 𝜎𝑡
2,  [5] 

 
and is related to the squares of past errors, and changes over time. Large errors through 𝑛𝑡−𝑖

2 gives rise to 
variance, which tends to be followed by another large error. This is a phenomenon of volatility clustering and 
is common in many financial time series (Wei, 2006).Equation [4] is simply the optimal forecast of 𝑛𝑡

2 if 𝑛𝑡
2 

follows the following AR (s) model; 
 

𝑛𝑡
2 = 𝜃0 + 𝜃1𝑛𝑡−1

2 + ⋯+ 𝜃𝑠𝑛𝑡−𝑠
2 + 𝑎𝑡 ,   [6] 

 
Where 𝑎𝑡  is an 𝑁 0, 𝜎𝑎

2  white noise process. Engle (1982) as a result called the model of error term 𝑛𝑡  with 
the variance specification given in [2] and [3] the ARCH model or ARCH(s) model. Equation [3] containing the 
property [4] is given as; 
 

𝜎𝑡
2 = 𝜃0 + 𝜙1𝜎𝑡−1

2 + ⋯ + 𝜙𝑟𝜎𝑡−𝑟
2 + 𝜃1𝑛𝑡−1

2 + 𝜃𝑠𝑛𝑡−𝑠
2 , [7] 

 
is known as the GARCH model of order (𝑟, 𝑠). Equation [7] is an ARMA form for the squared series 𝑎𝑡

2 . As a 
result, a GARCH model can be regarded as an application of the ARMA idea to the squared series 𝑎𝑡

2(Tsay, 
2005). Other GARCH-family models can be constructed from [7]. For instance, if the AR polynomial of the 
GARCH representation [7] has a unit root, then we have an integrated GARCH (IGARCH) model, i.e. 
 1 − 𝛼1 −⋯− 𝛼𝑚  = 0. From [4] and [7], it is evident that in specification of the ARCH, GARCH and IGARCH 
models, the effect of errors on conditional variance is symmetric, implying that positive error has the same 
effect as the negative error of the same magnitude (Wei, 2006). Moreover, because the 𝜎𝑡

2 and 𝑛𝑡
2 are always 

non-negative, some restrictions on the coefficients 𝜃0 , and 𝜙1have to be imposed. In order to accommodate 
the symmetric relationship between financial variables, and their volatility changes and further to relax the 
restriction on the coefficients in the model, Nelson (1991) proposed that; 
 

𝑙𝑜𝑔 𝜎𝑡
2 = 𝛾𝑡 +  𝜓𝑗𝑔 𝑎𝑡−1−𝑗 

∞
𝑗−0 ,     [8] 

 
Where 𝜓0 = 1 and 𝑎𝑡 = 𝑛𝑡 𝜎𝑡 . Clarified by Nelson (1991), the function 𝑔 is chosen to allow for symmetric 
changes depending on the sign of 𝑎𝑡  in the conditional variance, 𝑖. 𝑒., we may choose 
 

𝑔 𝑎𝑡 = 𝛿𝑎𝑡 + 𝛼  𝑎𝑡  − 𝐸|𝑎𝑡 | ,     [9] 
 
When 0 < 𝑎𝑡 < ∞, 𝑔(𝑎𝑡) is linear in 𝑎𝑡  with slope 𝛿 + 𝛼; when −∞ < 𝑎𝑡 < 0, 𝑔(𝑎𝑡) is linear with slope 𝛿 − 𝛼. 
consequently, [8] allows the conditional variance to respond asymmetrically to the rises and falls of the 
process. Equation [8] implies that the sign of 𝜎𝑡

2 will be positive regardless of the sign of the coefficients 
(Nelson, 1991). Therefore the model in which the evolution of the conditional variance satisfies [8] is 
regarded by Nelson as the EGARCH.  
 
Other asymmetric GARCH models are Glosten et al. (1993) and Zakoian (1994), GARCH (GJR-GARCH) also 
well known as Threshold GARCH, (Quadratic GARCH (QGARCH) (Engle and Ng, 1993) and Power GARCH 
(PGARCH) (Ding et al.1993). In the QGARCH model, the lagged errors’ centres are shifted from zero to some 
constant values. There is an extra slope coefficient for each lagged squared error in the GJR-GARCH model and 
the PGARCH model does not only consider the asymmetric effect; it also affords alternative approach to 
model the long memory property in the volatility. The identification of the GARCH model could be done by 
examining the autocorrelation function (ACF) or the partial autocorrelation function (PACF). These functions 
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also serve as a basis of the order specification of the GARCH models. The pattern of the ACFs and PACFs is 
compared with the theoretical characteristics of the ACF and PACF used to identify the orders of 𝐴𝑅𝑀𝐴 (𝑝, 𝑞) 
process. 
 
Prior to fitting the GARCH model, it is also important to detect the presence of ARCH disturbances in time 
series data as suggested by Weiss (1984). This is one of the most important requirements for using the 
GARCH model. The author warned against overlooking the presence of heteroscedasticity as it does not only 
cause the ordinary least squares (OLS) estimates to be inefficient, but could also give rise to over-
parameterised ARMA model. This paper uses the Lagrange multiplier (𝐿𝑀) test proposed by Engle (1982) to 
ascertain the presence of ARCH disturbances. To be specific, the study tests the hypothesis that the 
conditional variances of the series are constant. The 𝐿𝑀 test statistics are computed for various values of the 
𝑞 lags. This test follows a chi-square distribution. If the 𝐿𝑀 statistic is proven to be significant for higher lag 
orders, this is an indication that a GARCH model could parsimoniously predict the conditional error variance 
than a higher order ARCH. GARCH models have also been found to be effective when used on a series that 
exhibit non-linear effects (McLeod and Li, 1983). The presence of these effects may be checked with the 
Portmanteau Q-statistic. This statistic is based on a sample (ACF) of the squared OLS residuals for various 
lags and also follows a chi-square distribution. The desire is to obtain the significant observed probabilities 
associated with both the LM and the Q-statistics to be able to use the GARCH models. The selection of the 
most appropriate model for this study is done using Akaike Information Criterion(𝐴𝐼𝐶) and Bayesian 
Information Criterion(𝐵𝐼𝐶)proposed by Faraway and Chatfield (1998).These measures are intended to 
identify model which best fits the data. The proposed formulae are given as; 
 

𝐴𝐼𝐶 =
−2

𝑇
𝑙𝑛 𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑 +

2

𝑇
×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ,  [10]  

    
Where the likelihood function is evaluated at a minimum likelihood estimates and T is defined as a sample 
size (Tsay, 2010). To cater for the parameter estimation method used by the GARCH model, AIC reduces to; 
 

𝐴𝐼𝐶 = 𝑙𝑛  
ℓ

2
 +

2ℓ

𝑇
,      [11] 

       
Where 𝜎 ℓ

2denotes the maximum likelihood estimate of 𝜎𝑎
2 also known as the variance of 𝑎𝑡 . Tsay (2005) 

explains the first term of this criterion as a measure of the goodness of fit of the model to the data. The second 
term is defined as the penalty function of the criterion. The author explained that this name is given to this 
criterion as it penalises the candidate model by the number of parameters used.  
The proposed formula to represent the BIC is; 
 

𝐵𝐼𝐶 = 𝑙𝑛  
ℓ

2
 +

ℓ𝑙𝑛  𝑇 

𝑇
.      [12] 

       
The penalty for each parameter used is 2 for AIC and 𝑙𝑛 𝑇  for BIC. On this basis, BIC has a tendency to select 
the model with the least lag more specifically when the sample size is moderate or large. In this study, the 
both the AIC and BIC are computed for ℓ = 0,… , 𝑃, where P is a prespecified positive integer. The optimal 
model order is chosen by the number of model parameters, which minimizes either AIC or BIC. 
   
GARCH Model estimation: Parameters of the GARCH models can better be estimated with the method of 
maximum likelihood. During the estimation process, initial values of both the squared returns and past 
conditional variances are needed. Bollerslev (1986) and Tsay (2002) suggested the use of conditional 
variances in [7] or consequently, the past sample variance of the returns for the past variances may be used 
as initial values. Equation [2] is also taken into consideration when estimating the parameters of the model. 
From this equation, the 𝑒𝑡  are 𝑖. 𝑖. 𝑑. 𝑁(0,1) and independent of past realisation of 𝑛𝑡−1 . Equation [2] can 
alternatively be written in the following form to estimate the parameters; 
 

𝑌𝑡 = 𝑋′𝑡𝛽 +
1

1−𝜑1𝐵−⋯−𝜑𝑝𝐵
𝑝 𝑛𝑡 ,     [13] 

 
or 
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𝑛𝑡 =  1 − 𝜑1𝐵 −⋯− 𝜑𝑝𝐵
𝑝 (𝑌𝑡 − 𝑋′

𝑡
𝛽).    [14] 

 
Assuming 𝑌 =  𝑌1 , … , 𝑌𝑛 , 𝑋 =  𝑋1 , … , 𝑋𝑛 and 𝑌0and𝑋0  be some proper staring value required for computing 
𝑛𝑡  for 𝑡 = 1,…𝑛 from [14]. The conditional maximum likelihood estimates can be obtained by maximizing the 
conditional log-likelihood given by; 
 

𝑙 = 𝑙𝑜𝑔𝑓 𝛽, 𝜑, 𝜙, 𝜃 𝑌, 𝑋, 𝑌0, 𝑋0 =   
1

2𝜋𝜎𝑡
2 

1 2 
𝑛
𝑡=1 𝑒𝑥𝑝  −

𝑛𝑡
2

2𝜎𝑡
2 , [15] 

 

Where 𝜑 =  𝜑1 , … , 𝜑𝑝 , 𝜙 =   𝜙1, … , 𝜙𝑟  and 𝜃 =  𝜃1, … , 𝜃𝑠 . 

 
Model diagnostics: Independence and normality of the residuals 
 
The most recommended test for general departures from 𝑖. 𝑖. 𝑑. Observations are the BDS test introduced by 
Broock, Dechert and Scheinkman (1987). Since a single time series data is used in this study, only the 
univariate version of the BDS test is considered. If a given time series is independent, then no deterministic 
model is necessary for this completely random process; otherwise, there must exist some relationship in the 
series to be addressed. The BDS test of independence is based on the correlation dimension. Broock et al. 
(1997) follow-up study in 1996 show that the first-order asymptotic distribution of the test statistic is 
independent of the estimation error provided that the parameters of the model under test can be estimated 

 𝑛consistently.As a result, the BDS test can be used as a model selection tool and further as a specification 
test. The statistic has a standard normal distribution if the sample size is large enough. For small sample size, 
the distribution can be approximately obtained through simulation. The residuals of the model are rendered 
independent if the observed probabilities at for all embedding dimensions are in excess of 0.05 level of 
significance. The BDS test has stimulated quite a bulky literature and several applications have appeared in 
the finance area. See, Scheinkman and LeBaron (1989), Hsieh (1991) and Broock et al. (1991) for some of the 
application of the BDS test. To assess the normality of the residuals, the study uses a Kolmogorov-Smirnoff 
(KS) test. The desire is to obtain a symmetric approximated distribution of the residuals to conclude that the 
model fits the data. The KS test statistic must not be significant in order to render the model residuals normal. 
 
Forecasting: The study further uses the model to find a forecast error variance that is heteroscedastic. The 
conditional variance of the GARCH model is obtained by taking the conditional expectation of the squared 
mean corrected returns (Ngailo, 2011). Firstly, note the optimal 𝑙 − 𝑠𝑡𝑒𝑝 ahead forecast of 𝑌𝑡+1 given all 
information up to time 𝑡 is conditional expectation𝐸𝑡 𝑌𝑡+𝑙 . Wei (2006) suggested the associated 𝑙 − 𝑠𝑡𝑒𝑝 
ahead forecast error as; 
 

 1 − 𝜑1𝐵 −⋯− 𝜑𝑝𝐵
𝑝 𝜀𝑡 = 𝑛𝑡 .    [16]  

 
Consequently,  
 

𝜀𝑡 =  𝜓𝑗𝐵
𝑗∞

𝑗=0 𝑛𝑡 , and     [17] 

 
 

 𝜓𝑗𝐵
𝑗∞

𝑗=0 =
1

 1−𝜑1𝐵−⋯−𝜑𝑝𝐵
𝑝  

.    [18] 

 
The 𝑙 − 𝑠𝑡𝑒𝑝 ahead forecast error conditional variance thus becomes; 
 

𝑉𝑎𝑟(𝜀𝑡+1) =  𝐸𝑡[𝜀𝑡+𝑙 − 𝐸𝑡(𝜀𝑡+𝑙 ]2 = 𝐸𝑡  𝜓𝑗𝑛𝑡+𝑙−𝑗
𝑙−𝑙
𝑗=0  

2
, [19] 

 
The result of this equation is; 
 

𝐸𝑡  𝜓𝑗𝜎𝑖+𝑙−𝑗𝑒𝑙+𝑖−𝑗
𝑙−𝑙
𝑗=0  

2
=  𝜓𝑙

2𝜎𝑙+𝑖−𝑗
2

,

𝑙−𝑙
𝑗=0    [20] 
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With 𝜎𝑙+𝑖−𝑗

2 = 𝐸𝑡(𝑛𝑡+𝑙−𝑗
2 . As a result of these notations, Bollerslev (1986) suggested the following expression 

as a one-step ahead conditional forecast error heteroscedastic variance; 
 

𝜎 2 =
1

𝑛
 (𝑌𝑡 − 𝑋𝑡

′𝛽) 2𝑛
𝑖=1 .     [21] 

 
Due to the difficulty in generating out-of-sample forecasts for GARCH models, or generating forecasts using 
non-linear models, only the in-sample-forecasts performances of the models will be examined. The measures 
of error forecast such as the mean absolute error (MAE), mean absolute percentage error (MAPE) and the 
mean square error (MSE) are used to evaluate the models for forecast ability. The model which generates 
least forecast error would be preferred most. 
 
3. Data Analysis 
 
Preliminary Analysis: This section presents the results of the 50quarterlyobservations on inflation rates 
from 2002 to 2014. The original plot of this series is not linear and not stationary at levels. Obviously the 
stochastic properties of the series are also not constant. This suggests that the proposed methods for this 
study will work well with the data. A perusal of the actual data also shows that from the third quarter of 2002 
to the fourth quarter of 2003, inflation rates were very high in South Africa. A sudden dip as low as 4% 
followed in the first quarter of 2005 but gradually increased until the highest peak ever which is visible in the 
third and fourth quarters of 2008. These time-epochs constitute volatility in inflation rates. 
 
Figure 1: Log transformed plot of the South African Inflation rates from Q3 2002 to Q4 2014 

 
 
Figure 2 depicts a first differenced inflation series. Visible spikes in this figureare evidence of obvious 
volatility clustering in the series. This further shows the returns to be moderately stable overtime as results 
of transformation. The said behaviour of series returns appear to be in line with most financial theories and 
models which usually assume the prices to returns to be a stationary process. A further analysis is continued 
with a first differenced stationary series. 
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Figure 2: Log transformed-first differenced series of the South African Inflation rates 

 
 
The results in Table 1 show that the AR (1) and the intercept are significant allowing the analysis to be done 
on the basis of this model as mean equation and GARCH (1, 1) as variance equation. Further preliminary 
analyses provide evidence that the variance changes across time(heteroscedastic) as strongly suggested by 
the LM statistic in Table 2. The observed probabilities associated with this test are all less than the 0.05 
significance level. This is a good indication that a long memory period GARCH model is one approach to 
modelling time series with heteroscedastic errors than the ARCH model. Further note that the observed Q-
statistics in Table 2 indicate that the residuals are non-linear, confirming that the GARCH model would be 
more appropriate to be used in parsimoniously predicting model volatility error variance than the ARCH 
model. By observation, the ACF and PACF plots of the residuals provide values which are within bounds of 
95% confidence interval for Gaussian white noise. This strongly suggests that these plots are insignificant at 
0.05 significance level thereby confirming that means and variance equations are correctly specified. 
 
Table 1: AR (1) parameter estimates 

Parameter Estimates 
Variable DF Estimate Standard Error t Value Approx 

Pr> |t| 
Intercept 1 6.3680 0.7951 8.01 <.0001 
AR1 1 -0.8386 0.0752 -11.15 <.0001 

 
Table 2: Tests for ARCH Disturbances Based on OLS Residuals 

Order Q Pr > Q LM Pr > LM 
1 20.4679 <.0001 18.5405 <.0001 
2 21.9400 <.0001 22.9840 <.0001 
3 22.1355 <.0001 23.0297 <.0001 
4 23.1929 0.0001 23.4135 0.0001 
5 24.4069 0.0002 23.4429 0.0003 
6 25.3829 0.0003 23.5906 0.0006 
7 25.6769 0.0006 23.6034 0.0013 
8 25.6774 0.0012 23.6050 0.0027 
9 25.7500 0.0022 23.6238 0.0049 
10 25.8266 0.0040 23.6271 0.0087 
11 25.8458 0.0068 23.6528 0.0143 
12 25.8672 0.0112 23.6631 0.0226 

 
The purpose of this study is explore the performance of GARCH-family models and use the selected model in 
estimating and forecasting inflation volatility in South Africa. To help decide on the GARCH-model best suited 
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for the study, the minimum information criteria are used. The selection of the best model was based on the 
minimum value of the AIC and SBC. The results (not shown here) revealed that the 
𝐴𝑅 (1)_𝐼𝐺𝐴𝑅𝐶𝐻 (1, 1)outperformed all the eight GARCH-type models. Both the AIC and the SBC were in 
favour of this model. The next selected models were the 𝐺𝐽𝑅 − 𝐺𝐴𝑅𝐶𝐻 (1, 1) and EGARCH respectively. 
𝑄𝐺𝐴𝑅𝐶𝐻 (1, 1)was the least favoured model.  
 
Primary Analysis: Since the study sought to explore the ability of GARCH-type models in forecasting 
inflation volatility, both the symmetric and asymmetric GARCH-type models are considered. Ultimately, an 
optimal model with least forecast errors will be chosen. Note that the researcher included the mean and the 
AR effects when fitting the models. This was done to allow the output that contains both the mean and the 
variance equations. Bollerslev et al. (1992) suggested 𝐺𝐴𝑅𝐶𝐻 (1, 1) and 𝐺𝐴𝑅𝐶𝐻 (2, 1) as adequate for 
modelling volatilities even over long sample periods. Therefore these models are considered when generating 
the results. To eliminate biasedness, the models are once more checked for appropriates after including the 
first and second lags in the GARCH and the results are summarised in Table 3. 
 
Table 3: Selection of most appropriate 𝑮𝑨𝑹𝑪𝑯 (𝒎, 𝒔) 

Model SBC AIC 
IGARCH (1, 1) -50.6279 -58.1955 
IGARCH (2, 1) -46.7362 -56.1953 
GJR-GARCH (1, 1) -75.3161 -77.2079 
GJR-GARCH (2, 1) -34.0793 -49.2139 
EGARCH (1, 1) -47.1374 -58.4883 
EGARCH (2, 1) -52.3347 -65.5774 

 
𝐴𝑅 (1)_𝐼𝐺𝐴𝑅𝐶𝐻 (1, 1), 𝐴𝑅 (1)_𝐺𝐽𝑅 − 𝐺𝐴𝑅𝐶𝐻 (1, 1) and 𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)are considered most 
appropriate among the 𝐺𝐴𝑅𝐶𝐻 (𝑚, 𝑠) models according to the SBC and AIC. Therefore, these models are 
appropriately fitted as follows; 
 

𝜎𝑡
2 = 𝜃0 + 𝜙1𝜎𝑡−1

2 + (1 − 𝜙1)𝑎𝑡−1
2 ,           for 1 > 𝜙1 > 0.  [22] 

 
Please take note that the unconditional variance of  𝑟𝑡 = 𝑎𝑡 + 𝜇𝑡  , where 𝑎𝑡 = 𝜎𝑡𝜖𝑡  is not defined, and this 
makes the 𝐴𝑅 (1)_𝐼𝐺𝐴𝑅𝐶𝐻 (1, 1)model suspect for an excess returns series. The results of the estimated 
parameters are presented in Table 4. 
 
Table 4:𝑨𝑹 (𝟏)_𝑰𝑮𝑨𝑹𝑪𝑯 (𝟏, 𝟏) Estimates 

 
 
 

 
The mathematical form of this model is shown as; 
 

𝜎𝑡
2 = 0.0000 + 0.354𝜎𝑡−1

2 + 0.646)𝑎𝑡−1
2 ,      with 1 > 𝜙1 > 0  [23] 

Variable Estimate Approx 
Pr> |t| 

Mean equation 
Intercept -0.0014 0.9025 
AR1 0.2936 0.0532 
Variance equation 
ARCH0 1.0537E-8 <.0001 
ARCH1 0.3540 <.0001 
GARCH1 0.6460 <.0001 
Diagnostics 
Normality 7.9133 (0.0191) 
MSE 201.445 
Total R-Square Undefined 
Unconditional 
variance 

Undefined 
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 𝑟𝑡 = −0.0014 + 𝜇𝑡  
 
The GJR-GARCH model is a simple extension of GARCH with an additional term added to account for possible 
asymmetries (Knight and Satchell, 2003). 𝐴𝑅 (1)_𝐺𝐽𝑅 − 𝐺𝐴𝑅𝐶𝐻 (1, 1)could not be properly fitted. Only the 
intercept of this model was generated and therefore the 𝐴𝑅 (1)_𝐺𝐽𝑅 − 𝐺𝐴𝑅𝐶𝐻 (2, 1)model was generated 
instead. An appropriate form of this model is given as; 
  

𝜎𝑡
2 = 𝜃0 + 𝜙1𝜎𝑡−1

2 + 𝜙2𝜎𝑡−2
2 + 𝜃1𝑛𝑡−1

2 + 𝜃2𝑛𝑡−2
2 + 𝛾𝜆𝑡−1𝜀𝑡−1 ,  [24] 

𝜆𝑡−1 =  
1       𝑖𝑓 𝜀𝑡−1 < 0
0       𝑖𝑓 𝜀𝑡−1 ≥ 0

 . 

 
Estimates of parameters of 𝐴𝑅 (1)_𝐺𝐽𝑅 − 𝐺𝐴𝑅𝐶𝐻 (2, 1)are summarized in Table 5. 
 
Table 5: 𝑨𝑹 (𝟏)_𝑮𝑱𝑹 − 𝑮𝑨𝑹𝑪𝑯 (𝟐, 𝟏)parameter estimates 

Variable Estimate Approx 
Pr> |t|  

Mean equation 
Intercept 0.0037 0.9401 
AR1 -0.3253 . 
Variance equation 
TARCHA0 0.0180 0.5394 
TARCHA1 -0.1773 . 
TARCHB1 0.2448 0.5312 
GJR-GARCH1 0.0108 . 
GJR-GARCH2 0.005556 . 
Diagnostics 
Normality 170.6632 (<0.0001) 
Total R-Square Undefined 
Unconditional 
variance 

0.0197 

 
Please note that no leverage effect for 𝐴𝑅 (1)_𝐺𝐽𝑅 − 𝐺𝐴𝑅𝐶𝐻 (2, 1)model could be estimated according to 
Table 5. Mathematical form of this model is given as; 
 

 𝜎𝑡
2 = 0.0195 − 0.2371𝜎𝑡−1

2 + 0.2943𝜎𝑡−2
2 + 0.0943𝑛𝑡−1

2 + 0.00000𝑛𝑡−2
2 . [25] 

 
Table 6 gives results for the AR (1)_EGARCH (2, 1) model. 
Table 6:AR (1)_EGARCH (2, 1) parameter estimates 

Variable Estimate Approx 
Pr> |t| 

Mean equation 
Intercept -0.0035 0.7714 
AR1 -0.0921 0.0523 
Variance equation 
EARCH0 -11.6754 <.0001 
EARCH1 0.5496 0.0475 
EGARCH1 -1.0949 <.0001 
EGARCH2 -0.0990 0.6399 
THETA -0.1513 0.4910 
Diagnostics  
Normality  0.5692 (0.7523) 
Total R-Square Undefined 
MSE 180.988 
Unconditional 
variance 

Undefined 
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Mathematically, AR (1)_EGARCH (2, 1) model is formulated as; 
 

𝑙𝑜𝑔𝜎𝑡
2 = −11.6754 + 0.5496

 𝑎𝑡−1 + −0.1513 𝑎𝑡−1

𝜎𝑡−1
− 1.0949𝜎𝑡−1

2 − 0.0990𝜎𝑡−1
2 .  [26] 

 
Presented next are the results of the BDS test of serial correlation for the first ten dimensions. A distance of 
two was used to generate the residuals. The BDS test is used to identify GARCH type that best models the 
conditional variance of inflation series for the chosen period. The BDS test for serial independence is a 
nonparametric test used also to detect non-linearity in the standardised residuals of the GARCH-type models 
selected in this study. This test is based on the null hypothesis that the data are pure white noise, that is, 
completely random (Broock et al., 1996). Panagiotidis (2002) suggested that once linear or non-linear 
structure in the data has been removed; the rest should be due to an unknown non-linear data generating 
process. The expectation is to have the residuals which follow a white noise process to conclude that the 
model is a true data generating process. The null hypothesis should not be rejected in order to render the 
model adequate for capturing all the relevant features of the data.  
 
Table 7: BDS Test results for Independence 

Embedding 
Dimension 

AR (1)_IGARCH (1, 1) AR (1)_GJR-GARCH (2, 1) AR (1)_EGARCH (2, 1) 
 

BDS Pr > |BDS| BDS Pr > |BDS| BDS Pr > |BDS| 
2 -1.2026 0.2291 -0.4556 0.6487 1.4176 0.1563 
3 -1.0990 0.2718 -0.5670 0.5707 1.1812 0.2375 
4 -1.0623 0.2881 -0.2788 0.7804 1.9385 0.0526 
5 -1.4403 0.1498 -0.5974 0.5502 2.1562 0.0311 
6 -0.5703 0.5685 -0.0611 0.9513 2.2649 0.0235 
7 -1.1585 0.2467 -1.3315 0.1830 1.5941 0.1109 
8 -0.7476 0.4547 -1.0572 0.2904 1.6405 0.1009 
9 -0.4672 0.6404 -0.9181 0.3586 1.5224 0.1279 
10 -0.6269 0.5307 -1.0109 0.3121 1.1228 0.2615 

 
Results in Table 7 reveal that the residuals of the three models are not statistically significant at 0.01, 0.05, 0.1 
levels of significance except for some in 𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)model at dimensions 4, 5 and 6. Therefore, the 
three models satisfy the assumption of randomness of the residuals according to Broock et al. (1996). 
 
Evaluating forecasting ability: This section evaluates the inflation forecast ability by the three models. 
Generated by SAS are the plots of conditional variances for the selected period and the next 12 months. The 
associated forecast error measure such as the MAPE, MAE and the MSE are given to help decide on an optimal 
model. The model with a least forecast error measure is considered robust. The conditional standard 
deviations are summarised as Figures 3 to 5 and associated measures in Table 8. 
 
Figure 3: 𝑨𝑹 (𝟏)_𝑰𝑮𝑨𝑹𝑪𝑯 (𝟏, 𝟏)Conditional standard deviations 
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Figure 4 : 𝑨𝑹 (𝟏)_𝑬𝑮𝑨𝑹𝑪𝑯 (𝟐, 𝟏) Conditional standard deviations 

 
 
Figure 5: 𝑨𝑹 (𝟏)_𝑮𝑱𝑹 − 𝑮𝑨𝑹𝑪𝑯 (𝟐, 𝟏) Conditional standard deviations 

 
 
Figure 3 to 5 reveal the forecasts of inflation volatility in the next year, 2015. It is apparent that the error 
terms in inflation series have not been constant over the years and this is explained well by the spikes visible 
in the figures. This is also an indication that the South African inflation series is volatile and this is captured 
well by the three models. However, the forecasts show that in future, inflation may be stable and this is 
indicative of almost smoothed line depicted in the figures. Both the 
𝐴𝑅 (1)_𝐼𝐺𝐴𝑅𝐶𝐻 (1, 1)and𝐴𝑅 (1)_𝐺𝐽𝑅𝐺𝐴𝑅𝐶𝐻 (2, 1)appear not to be good forecasters of conditional variance.  
 
Table 8: Forecast error measures 

Measure  Model 
IGARCH (1, 1) EGARCH (2, 1) GJR-GARCH (2, 1) 

MAE 0.0953 0.0814 0.0823 
MAPE 146.818 102.2620 111.8973 
MSE 0.0201 0.0177 0.0190 
Model 
ranking 

3 1 2 
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The error measures choose the asymmetric 𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1) model as one which best models 
conditional variance. More evidence can be gathered on the associated Figure 4 which shows the forecasted 
volatility by this model. The 𝐴𝑅 (1)_𝐼𝐺𝐴𝑅𝐶𝐻 (1, 1)model was least ranked by the forecast measures. These 
findings confirm those reported by many studies on this subject. Therefore, EGARCH is an optimal model 
among other GARCH-type models. 
 
Figure 6: Forecasting ability of the 𝑨𝑹 (𝟏)_𝑬𝑮𝑨𝑹𝑪𝑯 (𝟐, 𝟏) model 

 
 
Figure 6 confirms that the 𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1) model has the ability to capture the volatility present in the 
data set. The predicted values are shown to be moving along with the original series. As shown in the figure, 
inflation volatility forecasts by the model for the period January 2015 to December 2015 will decrease but at 
a very low pace. The results in Figure 6 confirm the forecasts by the three models in Figure 3 to 5. 
 
4. Results and Discussion 
 
Parameter estimates of the 𝐴𝑅 (1)_𝐼𝐺𝐴𝑅𝐶𝐻 (1, 1)for the variance equation are robust as seen in Table 4. The 
sum of the ARCH and GARCH coefficients is very close to unity, and this implies that volatility shocks are 
pretty persistent. This is an indication of a covariance stationary model with a high degree of persistence and 
long memory in the conditional variance. Due to this high rate, the response function to shock is likely to die 
slowly. As a result, new shocks may have influence in returns for a longer period. This is another one of the 
conditions of the GARCH-type model application. Evidence about parameter estimates robustness can be 
gathered on𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 which are less thanthe 0.05, 0.01 and0.1 levels of significance. The significant 
parameter estimates of the 𝐴𝑅 (1, 1)_𝐼𝐺𝐴𝑅𝐶𝐻 model further proofs that coefficients of the conditional 
variance equation have a strong support for the presence of ARCH and GARCH effects. The AR term in the 
mean equation of this model is significant at 0.1 level of significance. The results in Table 4 also suggest that 
the intercept (also known as the mean) of the return series is not significantly different from zero. This 
condition is consistent with the random walk hypothesis. The leverage effect in the mean equation exceeds 
zero and is significant at 0.1 level of significant. This is in support of the assumption that negative and 
positive shocks have different impact on the volatility quarterly returns. 
 
The variance equation parameters of the 𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)model in Table 6are significant except for one 
associated with EGARCH2. The leverage effect is calculated as −0.1513and is negative and insignificant as 
expected.The asymmetric (leverage) effect captured by the negative parameter estimate is less than zero 
suggesting absence of leverage effect. Parameter estimates of the mean equation for the 
𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)model are insignificant.Parameter estimates of the𝐴𝑅 (1)_GJR − GARCH (2, 1) model in 
Table 5both for the mean and variance equations seem to be unstable and insignificant. Due to inconclusive 
results exhibited by this model, not much can be deliberated. The mean values in the mean equations of the 
three models are less than zero and insignificant, implying that these models detect low volatility in inflation 
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series. This also explains why the spikes in Figures 3 to 6 are gradually levelling off. This may be good news to 
the country as many sectors affected by this series may be stabilised. Volatility has disadvantages such as the 
potential to unsettle investors and undermining the role of exports in growth strategy of economies. The 
findings of this study provide a good motivation for the implementation of fixed inflation rates in future and 
consequently consumer prices may be lowered and purchasing power of money may be improved. This will 
enable more people to start saving for the future since they will have more money left in their pockets. 
 
The diagnostic tests of the three models provide significant observed probabilities of the normality tests for 
the 𝐴𝑅 (1)_𝐺𝐽𝑅 − 𝐺𝐴𝑅𝐶𝐻  2, 1 and𝐴𝑅 (1)_𝐼𝐺𝐴𝑅𝐶𝐻 (1, 1)models. The assumption of normality is violated for 
these models but catered for by the 𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)model. The normality test in the first two models 
indicates that the conditional normal distribution may not fully explain the leptokurtosis in inflation rates but 
is fully supported by the 𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)model (Bollerslev, 1987). The residuals of the three models 
are also independent according to the BDS test summarised in Table 8 for all embedding dimensions implying 
that the models are correctly specified. The residuals of the three models also follow a white noise process, 
implying these models are a true data generating process. Further diagnostics tests provide the results for the 
forecast error measures which are all in favour of the 𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)model. The diagnostic tests and 
the absence of leverage or asymmetric effects confirm that the 𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)model is best suited to 
measure the volatility of the inflation series. The findings are in accordance with those reported by different 
studies. EGARCH model outperforms other GARCH models as it models and forecasts volatility better than 
other GARCH-type models.  
 
5. Conclusion 
 
This paper explored the robustness of GARCH-type models in estimating the volatility of inflation rates in 
South Africa. Volatility clustering, leptokurtosis and leverage effects were examined for the series for the 
period 2002 September to December 2014. Preliminary analyses proved that the data has heteroscedastic 
and non-linear errors. Stationarity of the series was achieved after first differencing the log transformed data. 
About nine GARCH-type models were compared and only three were selected according to the AIC and SBC. 
The maximum likelihood estimation method was used to estimate parameters of the selected models and it 
was discovered that 𝐴𝑅 (1)_𝐺𝐽𝑅 − 𝐺𝐴𝑅𝐶𝐻 (2, 1)was the least robust model in terms of the parameter 
estimates and other diagnostic tests. Though the sum of ARCH and GARCH effects in the 
𝐴𝑅 (1)_𝐼𝐺𝐴𝑅𝐶𝐻 (1, 1)model were in accordance with theory and significant compared to the 
𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)model, the former was ranked second by the minimum information criteria. The 
intercepts of the three models were very small (less than zero) and insignificant implying that volatility 
effects captured by these models in inflation rates are very low.The leverage effect in the 
𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)model suggested absence of leverage effect in the series. Overall, the 
𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1)model was found to be more appropriate for modelling the series with heteroscedastic 
errors. This model proved that inflation rates in South Africa exhibits the stylised characteristics such as 
volatility clustering, leptokurtosis and asymmetry effects. 
 
The parameter estimates of the 𝐴𝑅 (1)_𝐼𝐺𝐴𝑅𝐶𝐻 (1, 1)model suggested a high degree persistent in the 
conditional volatility of the series. This evidence of high volatility persistence and long memory in this model 
is suggestive of relevant IGARCH models probably with ARMA effects. Other asymmetric GARCH models may 
be used for further studies and the results may be compared with those obtained in this study. This may aid 
in identifying the most optimal model among the family of asymmetric heteroscedastic models that are more 
appropriate for inflation rates. The forecasts obtained for inflation rates obtained through the 
𝐴𝑅 (1)_𝐸𝐺𝐴𝑅𝐶𝐻 (2, 1) model could be of vast help to decision makers when formulating strategies 
concerning this sector. The information obtained would go a long way in arriving at decisions on issues such 
as augmentation of consumer prices in future. Decision makers could also be able to, from time to time well in 
advance, benchmark with other countries and prepare for the future.  
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