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Abstract: This paper adopted the Box-Jenkins methodology to estimate a univariate time series model. 
Quarterly data collected from the South African Reserve Bank covering the period 1994 to 2014 was used. 
The initial plot of the series revealed that household debt is explained by an irregular and non-seasonal 
component. Owing to the non stationarity of the series, first differencing was applied to induce 
stationarity. The ACFs and PACFs identified six models. Of the six identified models,𝐴𝑅𝐼𝑀𝐴  3, 1, 0  was 
selected according to the standard error estimates and the information criteria. The proposed model 
passed all the diagnostic tests and was further used for producing ten period forecasts of household debt. 
The forecasted household debt rates obtained were above 75% and within confidence bounds of 95%. In-
sample and out-of-sampling forecasts moved together confirming the reliability of the model in 
forecasting household debt and vigour in predictive ability. The proposed model exhibited the best 
performance in terms of Max APE and Max AE and ascertained the robustness and accuracy of the Box-
Jenkins ARIMA in forecasting. Both a trend of the data captured and non-seasonal peaks were predicted 
by the model. These forecasts were proven to be realistic and a true reflection of economic reality in the 
country. The paper recommended a non-seasonal𝐴𝑅𝐼𝑀𝐴  3, 1, 0  be used by researchers, policy makers 
and decision makers of different countries to make forecasts of household debt. The South African 
authorities were also encouraged to use this model to produce further forecasts of the series when 
making long term planning. 
 
Keywords: Autoregressive integrated moving average method, Forecasting, Household Debt, Robustness 
and Accuracy, Stationary Series, Univariate Time Series 

 
1. Introduction 
 
A sequential collection of a set of data overtime is known as time series, i.e., hourly, daily, monthly, 
quarterly, yearly, etc. The kind has the property that neighbouring values are correlated known as 
autocorrelation, (Etuk et al., 2013). Time series analysis is mainly used as pattern of change detection in 
statistical information over a consistent time interval. The pattern is projected to do estimation for the 
future. As expected, time series data is non-stationary. A stationary series has a constant mean and 
variance and satisfies all the properties of a white noise process such as zero mean and unit variance 
(Wei, 2006).  An autoregressive integrated moving average (𝐴𝑅𝐼𝑀𝐴)method is a combination of time 
series models and is effective in forecasting a value in a response time series as a linear combination of its 
own past values, past errors (also called shocks or innovations), and current and past values of other time 
series. This approach was first introduced by Box and Jenkins (1976) and has since become the most 
popular models for forecasting univariate time series data. Madsen (2008) and Boubaker (2011) are a 
few of the authors who popularised the model and they have also written extensively on non-seasonal 
𝐴𝑅𝐼𝑀𝐴 models. The 𝐴𝑅𝐼𝑀𝐴 methodaffords a broad set of tools for building a univariate time series 
model. The procedure for this method includes model identification, parameter estimation and selection, 
and forecasting.  
 
This paper explores the application of time series analysis to forecast household debt in South Africa (SA). 
To be precise, the paper is aimed at selecting the 𝐴𝑅𝐼𝑀𝐴  model that may be suitable in generating the 
forecasts of the series. The choice of this model is due to its innovativeness and wide use in recent studies. 
This model is suited to perform duties as highlighted in the previous paragraph. Additionally, the 
𝐴𝑅𝐼𝑀𝐴 frameworkhas has been found to be reliable in terms of its performance. This framework has 
advantage over others as it provides an analyst an opportunity to make a choice between candidate 
models and can effectively handle larger number of time series, the duty which multivariate analyses fails 
to perform. It also provides a room to critically scrutinise candidate models and decide on the one that is 
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best suited for the data. The framework is also uncomplicated and gives the results that allows the 
researcher to make a reflection about the data based on its past, present and future state. 
 
The emphasis of 𝐴𝑅𝐼𝑀𝐴 is basically on forecast performance and advocates more focus on minimising 
out-of-sample forecast errors than on maximising in-sample ‘goodness of fit’ (Meyler, Kenny and Quinn, 
1998). Consequently, 𝐴𝑅𝐼𝑀𝐴isdefiantly one of ‘model mining’ with the aim of optimising forecast 
performance. There is no prior knowledge or impression about the model to be fitted or chosen. The onus 
to decide on whether the model is adequate or not is dependent on the measures used and its 
performance to provide forecasts. The framework is appealing to this study since only one variable 
(univariate analysis), household debt is analysed. Stockton and Glassman (1987) and Litterman (1986) 
advocate for this framework as it frequently outperform more sophisticated structural models in terms of 
short-run forecasting ability. The following authors among others as also cited by Suhartono (2011) used 
these models to effectively perform forecasting of time series variables (economic and financial data); 
Haswell et al. (2009) applied this model for forecasting soil dryness index, Modarres (2007) and Abebe 
and Foerch (2008) used it for drought forecasting, Briet et al. (2008) for short term malaria prediction, 
Momani (2009) for forecasting rainfall, Wagner (2010) for forecasting daily demand in cash supply 
chains. Other applications of these models can be found in Vu and Turner (2005; 2006), Chu (2008; 
2009), Chang et al. (2009), de Oliveira Santos (2009), Coshall (2009), Song et al. (2009).  
 
Forecasting household debt of SA is of special importance for policy makers. Without proper and reliable 
forecasts, it becomes difficult for policy makers to come up with feasible plans. With accurate forecasts 
generated, it may be easy for the responsible authorities to formulate and device appropriate strategies to 
deal with household debt in the country. Also with proper modelling technique applied, improved 
forecasting accuracy of household debt in the country may be attained. Furthermore, this paper adds to 
the literature by evidently studying trends in household debt using the Box-Jenkins approach and for 
assessing the effectiveness of this method in forecasting. Additionally, the paper contributes to the 
research information on household debt in SA. Both the application and theory that is accessible to a 
various students, practitioners and researchers is presented in this paper. The remainder of this paper is 
organized as follows; Section 2 defines the data used and Section 3 describes the procedure used for data 
analysis. In Section 4, empirical results are discussed and Section 5 provides conclusions and some 
recommendations for future studies policy modification. 
 
Data: A twenty year historical household debt to disposable income data which is seasonally adjusted at 
current pricesin SA are collected from the first quarter of1994to the first quarter of 2014.A total of 80 
observations are used. The data is sourced from the South African Reserve Bank website 
(www.sarb.co.za). This data was subjected to log transformation prior to the analysis. The Statistical 
Software Analysis (SAS) version 9.3 was used to execute the analysis of data. 

 
Household debt to disposable income: Clark and Daniel (2006) define this variable as a ratio that 
measures the percentage of the average households’ disposable income used to repay debt. Increased 
households are associated with decreased interest rates which lure people to entering into mortgage 
debt, increased inflation rates, unemployment rates and other. Additionally, the ratio in household debt 
increases as the amount of disposable income decreases. However, this study aims at building a 
univariate model that will be used to forecast this variable on the basis of its past and present values. 
 
2. Theoretical framework 
 
This section describes the methodological procedure used for data analysis. The methodology involves 
the four stages according to Box-Jenkins. 
 
Identifying ARMA Models: This is the most crucial step in time series analysis. There are different ways 
to identify the fitted seasonal and/or non-seasonal ARIMA model. A set of autocorrelation function (ACF) 
and partial ACF may be visually inspected to decide on the most appropriate model for the data (Faraway 
and Chatfield, 1998; Kihoro, Otieno, Wafula (2004) and Hipel and McLeod, 1994). These are statistical 
measures which reflect how the observations are related to each other in a time series. If the objective of 
the study is modelling and forecasting, it is often useful to plot the ACF and PACF against consecutive time 
lags so as to determine the order of non-seasonal and/or seasonal autoregressive and moving average 
terms. An appropriate ARIMA and/or SARIMA model is considered in identifying a tentative model. This 
procedure refers to the methodology in identifying necessary transformations to the data, the decision to 
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include the deterministic parameter and proper orders of p and q and/or P and Q for the said model (Hu 
et al., 2010). The following are important steps in the identification the process as outlined in Hu (ibid): 
 
Step 1: Provide plot of the series and choose proper transformations. The plot will reveal features of a 
trend, seasonality, outliers, non-constant phenomena, etc. This information provides a basis for 
postulating possible transformations to the data at hand. 
Step 2: Compute and examine the ACF and PACF of the original series. This helps in further confirming a 
necessary degree of differencing to induce stationarity to the data. Differencing is needed when the ACF 
decays slowly and the PACF cuts after lag 1.  
 
Unit root tests provided by Dickey and Fuller (1979; 1981) may be used in this scenario. The following 
ARIMA (p, d, q) models are recommended for economic data. It is a modified DF test also known as ADF 
and is estimated as follows: 
 

∆𝒀𝒕 = 𝜶𝟎 + 𝜷𝟎𝒀𝒕−𝟏 +  𝜷𝒊∆𝒀𝒕−𝒊 + 𝜺𝒕,
𝒌
𝒊=𝟏         [1] 

  
Where∇ is the first difference operator; t is the time drift; k represents the number of lags used and   is 
the error term; 𝛼′𝑠 and𝛽′s are the model bounds. The correct value for k is determined using the Akaike 
and the Schwarz-Bayesian information criteria. The ADF test includes a constant and time trend. For the 
decision rule, assuming that the series,  𝑌𝑡𝑡

𝑇 − 1  follows the AR (p) process, Hamilton (1994) shows that 
the rejection or acceptance of the null hypothesis of a unit root is based on running the regression; 
 

𝒁𝒕 = 𝝁 +  𝝓𝟏 − 𝟏 𝒀𝒕−𝟏 +  𝑪𝒋∆𝒁𝒕−𝒋 + 𝜺𝒕,
𝒑−𝟏
𝒋=𝟏        [2] 

 
Where 𝑍𝑡−1 = 𝑌𝑡−1 − 𝑌𝑡−𝑗−1 for j =  0, 1, 2, . . . , 𝑝 − 1and 𝜀𝑡  is a white noise process. The ADF test statistic 

is given as; 
 

𝝉𝑨𝑫𝑭 =
𝝓𝟏−𝟏

𝒔𝒆(𝝓 𝟏)
,           [3] 

   

Where 𝒕𝝓𝟏−𝟏is the test statistic of 𝝓𝟏 − 𝟏, 𝒔𝒆(𝝓 𝟏) is the standard error of𝝓𝟏 − 𝟏. The null hypothesis of a 

unit root 𝐻0: 𝝓𝟏 − 𝟏 is rejected if [3] is less than the appropriate critical value at some level of 
significance. Alternatively the test statistic rejects the null hypothesis if the corresponding probability 
value exceeds the level of significance. 
 
Table 1 shows characteristics of theoretical ACF and PACF for stationary process. To obtain optimal 
results, the patterns in the ACF and PACF should be matched with these theoretical patterns. 
 
Table 1: Theoretical characteristic of the ACF and PACF to identify the orders of ARMA (p, q)  

Process ACF PACF 
AR (p) Tails off as exponential decay or damped sine wave Cuts off after lag p 
MA (q) Cuts off after lag q Tails off as exponential decay or 

damped sine wave 
ARMA (p,q) Tails off after lag (q-p) Tails off after lag (p-q) 

 
If the visual examination of the ACF and PACF does not provide appropriate conclusions, other widely 
used measures such as the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 
proposed by Faraway and Chatfield (1998) may be useful. Mathematical formulae of these measures are 
given as: 
 

𝑨𝑰𝑪 =
−𝟐

𝑻
𝒍𝒏 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 +

𝟐

𝑻
×  𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 ,     [4] 

  
Where the likelihood function is evaluated at a minimum likelihood estimates and T is defined as a 
sample size (Tsay, 2010). For a Gaussian model, AIC reduces to: 
 

𝑨𝑰𝑪 = 𝒍𝒏  
𝓵

𝟐
 +

𝟐𝓵

𝑻
,          [5]
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Where 𝜎 ℓ
2denotes the maximum likelihood estimate of 𝜎𝑎

2 also known as the variance of 𝑎𝑡 . Tsay (2005) 
explains the first term of this criterion as a measure of the goodness of fit of the model to the data. The 
second term he defines it as the penalty function of the criterion. The author explained that this name is 
given to this criterion as it penalises the candidate model by the number of parameters used.  
The BIC is presented as: 
 

𝑩𝑰𝑪 = 𝒍𝒏  
𝓵

𝟐
 +

𝓵𝒍𝒏 𝑻 

𝑻
.          [6] 

 
The penalty for each parameter used is 2 for AIC and 𝑙𝑛 𝑇  for BIC. On this basis, BIC has a tendency to 
select the model with the least lag more specifically when the sample size is moderate or large. In this 
study, the both the AIC and BIC are computed for ℓ = 0,… , 𝑃, where P is a pre-specified positive integer. 
The optimal model order is chosen by the number of model parameters, which minimizes either AIC or 
BIC. 
 
Model estimation and selection: Suppose a non-seasonal ARIMA (p, d, q) model for time series 
𝑍𝑡 = 𝑧1 , 𝑧2, … , 𝑧 𝑛  is of the form: 
 
𝒀𝒕 =  𝝓𝟎 +  𝝓𝒊𝒚𝒕−𝒊

𝒑
𝒊=𝟏 + 𝒂𝒕 −  𝜽𝒊𝒂𝒕−𝒊,

𝒒
𝒊=𝟏  𝒂𝒕~𝑵 𝟎, 𝝈𝒂

𝟐 ,     [7]  

 
Where {at} is a white noise series and p and q are non-negative integers. The AR and MA models are 
special cases of the ARMA (p, q) model. Using the backshift operator, the model can be written as: 
 
 𝟏 − 𝝓𝟏𝑩−⋯−𝝓𝑷𝑩

𝒑 𝒓𝒕 = 𝝓𝟎 +  𝟏 − 𝜽𝟏 𝑩 −⋯−𝝓 𝒒𝑩
𝒒 𝒂𝒕.     [8] 

 
The polynomial 1 − 𝜙1𝐵 −⋯−𝜙𝑃𝐵

𝑝 is the AR polynomial of the model. Similarly, 1 − 𝜃1 𝐵 − ⋯− 𝜙 𝑞𝐵
𝑞 is 

the MA polynomial. Tsay (2010) suggested no common factors between the AR and MA polynomials; 
otherwise the order (p, q) of the model must be in a reduced form. He also suggested that the AR 
polynomial should introduce the characteristic equation of an ARMA model, a duty performed by the AR 
model. Weak stationarity of an ARMA model is satisfied only if all the absolute values of the solutions of 
the characteristic equation are less than one. If this is the case, the unconditional mean of the model 
according to Tsay (2010) is: 
 

𝑬 𝒓𝒕 =
𝝓𝟎

 𝟏−𝝓𝟏−⋯−𝝓𝒑 
.          [9] 

 
From [8], the AR polynomial is the same as 𝜙𝑝(𝐵) and the MA polynomial becomes𝜃𝑞(𝐵). Invertibility 

condition is satisfied if the roots of 𝜃𝑞 𝐵 = 0 lie outside the unit circle. To satisfy stationarity, it is 

required that 𝜙𝑝 𝐵 = 0 also lies outside the unit circle.Non-stationarity problem can be dealt with by 

reducing the series to stationary time series. This can be done by taking a proper degree of differencing. 
Introducing a differencing term in the model will result in ARIMA model, which is used to describe 
various homogeneous non stationary series. Differencing  1 − 𝐵 𝑑 𝑍𝑡 is applied to [8] and the resulting 
stationary 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑞) model becomes: 
 
𝝓𝒑 𝑩  𝟏 − 𝑩 𝒅𝒁𝒕 = 𝜽𝟎 + 𝜽𝒒 𝑩 𝒂𝒕,        [10] 

 
Where stationary AR operator 𝜙𝑝 𝐵 = 1 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵

𝑝and the invertible MA operator 

𝜃𝑞 𝐵 = 1 − 𝜃1  𝐵 − ⋯− 𝜙 𝑞𝐵
𝑞  share no common factors. According to Wei (2006), the parameter 𝜃0 

plays very different roles for 𝑑 = 0 and 𝑑 > 0.When 𝑑 = 0, the original process is stationary. When  𝑑 ≥
0, however, θ0is called a deterministic trend. This term may be omitted from the model unless it is really 
needed (Hu et al., 2010). The model in [10] is called 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞). 
 
Conditional least squares method is used to estimate parameters of the model. The sample size plays an 
important role in the estimation. At least 50 observation or more is needed according to Box and Jenkins 
(1976).The error term of the model is assumed to follow a white noise process. Selection of the model 
that best fits the data is done with the AIC and the BIC as shown in equations [4] and [6]. The model with 
least values of the statistics is considered the best and will be used to generate the forecasts. 
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Diagnostic checking: The overall fit of the model is evaluated by assessing the residuals. According to 
Box and Jenkins (1976), the residuals should follow a white noise process with zero mean and unit 
standard deviation. A graphical representation of the standardized residuals should look random and 
homoscedastic. Again an ACF is used to evaluate the assumption of randomness, or alternatively the 
Ljung-Box test (1978) may be used. This test is defined as: 
 
𝑸 = 𝑻(𝑻 + 𝟐) (𝑻 − 𝒌)−𝟏𝝆 𝒌.

𝟐𝑲
𝒌=𝟏          [11] 

 
The statistic is asymptotically distributed as 𝜒2with m degrees of freedom (Vogelvang, 2005). Where ρ is 
called the sample ACF of  𝛾𝑡(Tsay, 2005), T is the number of observations, k is the highest order for 
autocorrelation for which to test and 𝜌𝑗

2is the 𝑗𝑡ℎ  autocorrelation. The square of this test used to check the 

presence of autocorrelation in the model is as follows: 
 
𝑸∗ > 𝝌𝜶;𝒎−𝒑−𝒒−𝑷−𝑸

𝟐 .          [12] 

 
The null hypothesis is rejected if the observed 𝑝 ≤ 5%significance level or alternatively if the observed 
statistic is in excess of the critical value. This implies that autocorrelation exists up to order k.The 
assumption of normality of the residuals is evaluated with a histogram and QQ-plots.  
 
Forecasting using an ARMA Model: Forecasts of an 𝐴𝑅𝑀𝐴 (𝑝, 𝑞) model have characteristics similar to 
those of an AR (p) model after adjusting for the impacts of the MA component on the lower horizon 
forecasts. Tsay (2010) denote the forecast origin by h and the available information by 𝐹ℎ . The author 
suggested the 1-step ahead forecast of 𝑟ℎ+1from ARMA model as follows: 
 
𝒓 𝒉 𝟏 = 𝑬 𝒓𝒉+𝟏 𝑭𝒉 = 𝝓𝟎 +  𝝓𝒊

𝒑
𝒊=𝟏 𝒓𝒉+𝟏−𝒊 −  𝜽𝒊

𝒑
𝒊=𝟏 𝒂𝒉+𝟏−𝒊,     [13] 

 
The associated forecast error is calculated as: 
 
𝒆𝒉 𝟏 = 𝒓𝒉+𝟏 − 𝒓 𝒉 𝟏 = 𝒂𝒉+𝟏.         [14] 
 
The variance of 1-step ahead forecast error is: 
 
𝑽𝒂𝒓 𝒆𝒉 𝟏  = 𝝈𝒂

𝟐.          [15] 
 
For the ℓ − step ahead forecast, we have: 
 
𝒓 𝒉 ℓ = 𝑬 𝒓𝒉+ℓ 𝑭𝒉 = 𝝓𝟎 +  𝝓𝒊

𝒑
𝒊=𝟏 𝒓 𝒉(ℓ − 𝒊) −  𝜽𝒊

𝒑
𝒊=𝟏 𝒂𝒉(ℓ − 𝒊),     [16] 

 
Note that 𝒓 𝒉 ℓ − 𝒊 = 𝒓𝒉+ℓ−𝒊if  ℓ − 𝒊 ≤ 𝟎 and𝒂𝒉 ℓ − 𝒊 = 𝟎 ifℓ − 𝒊 > 0 and 𝒂𝒉 ℓ − 𝒊 =  𝑎ℎ+ℓ−𝑖  if ℓ − 𝒊 ≤
𝟎.  As a result, the multistep ahead forecasts of an ARMA model can be computed recursively (Wei, 2006). 
The associated standard error is computed as: 
 
𝒆𝒉 𝓵 = 𝒓𝒉+𝓵 − 𝒓 𝒉 𝓵 .          [17] 
 
Performance Comparison: Once the model has been fitted, subjected to diagnostic checks and used to 
produce forecasts, it is evaluated with forecast fit measures. This study uses the maximum absolute 
percentage error (MaxAPE) and the maximum absolute error (MaxAE) to evaluate the amount of this 
forecast error. These measures are computed using the proposed model both for the original and 
forecasted series. The model with least forecast errors is considered accurate. 
 
3. Empirical Analysis 
 
The analysis of data was informed by the methodology reviewed and the results are provided in this 
section. The initial step in time series analysis is to plot the series against time so as to help identify the 
properties of a model to be fitted. The results are presented in Figure 1. 
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Figure 1: Time series plot of log transformed household debt 

 
The household debt plot fluctuates with an increasing irregular trend throughout the period as shown in 
Figure1. A careful observation of the plot from 1994 to 2014 indicates that there was an increase in 
household debt in South Africa. However, the country experienced probably one of the lowest decline 
between the second quarter of 2002 and the first quarter of 2003. From the fourth quarter of 2003, the 
series started intensifying until it reaches the highest peak in 2007 to 2009. The period 2007 to 2009 
marks the financial crisis which emerged in the United States of America. The effects of this crisis spilled 
over to many economies and resulted in increased household debt levels in many countries of differing 
financial sophistication. SA was one of the countries which suffered these effects. An insignificant decline 
is seen from the last quarter of 2009. This could be as a result of national credit regulations which were 
legislated to help reduce debts in the country. SA also experienced a recession during this period. Due to 
the increasing irregular component displayed by the figure, it is concluded that the series is non-
stationary process. Furthermore, no seasonal variation is exhibited by the figure. A substantial number of 
the data points are far away from the mean (i.e. the line runs horizontally in a maroon line) confirming 
that the series is not stationary in the mean. Presented next are the ACFs and PACFs of the log 
transformed series. The purpose of these results is to examine if the series follows a white noise process 
or not. This will also help in determining the level of differencing needed. The results are presented in 
Figure 2. 
 
Figure 2: ACF and PACF of log transformed household debt 

 
 
The figure shows the ACF (located on the upper right corner of the figure) dying down slowly and all the 
lags up to about seven are statistically different from zero. All the lags lie outside a set confidence bounds 
of 95%. In addition, the PACF (lower left corner) cuts off dramatically after lag one and all other lags 
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appear to be insignificant. The results are in accordance with theoretical guidelines as summarised in 
Table 1. This provides a good basis to conclude that the series is not stationary according to Box and 
Jenkins (1976). To be able to apply Box-Jenkins methodology, differencing was applied to further 
transform the series to induce stationarity and the results are displayed in Figure 3. 
 
Figure 3: ACF and PACF of first order differencing of household debt 

 
 
Inspection of Figure 3 shows that the series became fairly stationary at first difference. The observations 
in the plot of first differencing depict an irregular movement but revert to their mean value with an 
approximately constant variability. Only lags 1, 4 and 5 of the ACF and lags 1 and 3 of the PACF are 
outside the constraints after first order differencing. These lags are confirmed to be the only lags which 
are statistically different from zero. This fairly implies that the transformed series became stationary at 
first difference and allows for the analysis to be continued. The mean and variances of the series are 
constant and therefore follow a white noise process (Hamilton, 1994). No sign of seasonal difference is 
revealed in the series even after data transformation. The ADF test in Table 2 was computed to confirm 
the results displayed by Figure 3.  
 
Table 2: Augmented Dickey-Fuller Unit Root Tests of first order differencing 

Type Lags Rho Pr< Rho Tau Pr< Tau 
Zero Mean 
  
  
  

5 
6 
7 
8 

-7.0522 
-8.4652 
-9.3620 
-9.0193 

0.0634 
0.0407 
0.0308 
0.0342 

-1.66 
-1.91 
-1.89 
-1.67 

0.0917* 
0.0538* 
0.0564* 
0.0892* 

Single Mean 
  
  
  

5 
6 
7 
8 

-7.4391 
-8.4048 
-9.3894 
-9.7299 

0.2347 
0.1836 
0.1423 
0.1301 

-1.65 
-1.81 
-1.81 
-1.67 

0.4524 
0.3708 
0.3737 
0.4425 

Trend 
  
  
  

5 
6 
7 
8 

-7.4190 
-8.4821 
-9.4926 
-9.6947 

0.6113 
0.5231 
0.4444 
0.4292 

-1.63 
-1.82 
-1.81 
-1.64 

0.7704 
0.6875 
0.6879 
0.7654 

* indicate significant values at 10% significance level 
 
Only the observed probabilities of ADF associated with zero mean are significant at 10% level of 
significance but insignificant at all levels in the presence of a single mean and a trend. Therefore the 
ARIMA models will be fitted without a mean and trend components restrictions. The results also just as 
revealed on Figure 3 confirm stationarity of the series after first difference. It also follows from Table 3 
that the ACF follows a white noise process with a mean equal to zero and a unit variance. Therefore the 
properties of stationarity are satisfied and allows for the forecasting model to be estimated with first 
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order differencing and no mean and trend components restrictions imposed. The results of this analysis 
are in accordance with Box and Jenkins (1976), Dickey and Fuller (1979; 1981) and Hu et al. (2010). 
 
Table 3: Autocorrelation Check for White Noise 
To Lag Chi-Square DF Pr>ChiSq Autocorrelations 
6 55.64 6 <.0001*** 0.298 0.293 0.441 0.384 0.270 0.246 
12 68.04 12 <.0001*** 0.272 0.197 0.132 0.042 0.068 0.004 
18 92.14 18 <.0001*** -0.145 -0.128 -0.162 -0.219 -0.226 -0.267 
*** Significant at 1%, 5% & 10% significance levels 
 
Since the correlograms given in Figure 3 are stationary, they are a good basis to be further used to 
identify the competing models. It is important to note that the patterns of ACFs and PACFs of AR(p) and 
MA (q) processes are different and may as a result identify different models. The following models are 
identified by trial and error from the figure; 
 
𝐴𝑅𝐼𝑀𝐴  1, 1, 0 ; 𝐴𝑅𝐼𝑀𝐴  3, 1, 0 ;  𝐴𝑅𝐼𝑀𝐴  0, 1, 1 ;  𝐴𝑅𝐼𝑀𝐴  0, 1, 3 ;  𝐴𝑅𝐼𝑀𝐴  1, 1, 1 ;  𝐴𝑅𝐼𝑀𝐴  3, 1, 3 . 
 
The parameters of the identified models are estimated using the conditional least squares method. The 
models are fitted and the one that fits the data well according to the tests are chosen to produce the 
forecasts of household debt in the country. The results of these models are summarised in Table 4. 
 
Table 4: Conditional Least Squares Estimation 
Model Parameter Estimate t-Value Approx 

Pr> |t| 
AIC & SBC Std Error 

Estimate 
𝐴𝑅𝐼𝑀𝐴  1, 1, 0  AR1,1 0.32026 3.00 0.0036*** -409.130 

-406.748 
0.018644 

       
𝐴𝑅𝐼𝑀𝐴  3, 1, 0  AR3,1 0.46382 4.63 <.0001*** -419.708 

-417.326 
0.017452 

       
𝐴𝑅𝐼𝑀𝐴  0, 1, 1  MA1,1 -0.24644 -2.26 0.0266*** -406.655 

-404.273 
0.018935 

       
𝐴𝑅𝐼𝑀𝐴  0, 1, 3  MA1,1 

MA1,2 
MA1,3 

-0.09105 
-0.12790 
-0.33435 

-0.85 
-1.19 
-3.10 

0.3995 
0.2373 
0.0027*** 

-413.258 
-406.112 

0.017949 

       
𝐴𝑅𝐼𝑀𝐴  1, 1, 1  MA1,1 

AR1,1 
-0.32126 
0.18529 

-2.95 
1.64 

0.0042*** 
0.1041 

-415.543 
-410.779 

0.017802 

       
𝐴𝑅𝐼𝑀𝐴  3, 1, 3  MA3,1 

AR3,1 
0.14536 
0.57784 

0.61 
2.92 

0.5460 
0.0045*** 

-418.123 
-413.359 

0.017518 

*** Significant at 1%, 5% & 10% significance levels 
 
Following Table 4 above, parameter estimates of 𝐴𝑅𝐼𝑀𝐴  3, 1, 0 appears to be more significant according 
to the corresponding approximated probabilities than those of other models. Further note that the 
observed t-value of this model parameter is larger that of other models. 
𝐴𝑅𝐼𝑀𝐴  1, 1, 0 and 𝐴𝑅𝐼𝑀𝐴  0, 1, 1  also have significant parameters and larger t-values. Other models 
have mixture of parameters (significant and insignificant). The standard error of 𝐴𝑅𝐼𝑀𝐴  3, 1, 0  is less 
than those of competing models followed by that of 𝐴𝑅𝐼𝑀𝐴  3, 1, 3 .The AIC and SBC also 
choose𝐴𝑅𝐼𝑀𝐴  3, 1, 0  as a model that best fits the data (Faraway and Chatfield, 1998). Therefore this 
model meets all the requirements and will further be used for forecasting of household debt. 
Mathematically, this model according to [7] with no constant, mean and trend according to the results in 
Table2 is given as: 
 

𝒀 𝒕 =  𝟎. 𝟒𝟔𝟗𝟖𝒚𝒕−𝟏.  
 
Before forecasts can be produced, the model was subjected to the diagnostic checking in order to ensure 
its suitability for forecasting and the results are given as Figure 4. 
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Figure 4: Residual normality diagnostics 

 
Firstly, the model residuals were checked and they were found to be approximated by a normal 
distribution as the histogram and Q-Q plots reveals. This validates the normality of the residuals 
assumptions and confirms 𝐴𝑅𝐼𝑀𝐴  3, 1, 0  as a sufficient candidate model. 
 
Figure 5: Residual correlation diagnostics 

 
 
Next, the residuals of the model were assessed for randomness. All the residuals were also not significant 
as noted in Figure 5. They were all less than 5% significance level. The ACFs and PACFs have all lags 
within the 95% confidence bounds except for lag one of the ACF. This implies that the residuals of the 
selected model are random and homoscedastic. The model is therefore adequate and can be used for 
forecasting household debt. The results are also in accordance with Ljung-Box (1978) as described by 
[12]. Forecasts of household debt in SA were generated using 𝐴𝑅𝐼𝑀𝐴  3, 1, 0  model. The associated 
confidence intervals are provided and the results are given as a summary of Figure 6. 
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Figure 6: 𝑨𝑹𝑰𝑴𝑨  𝟑, 𝟏, 𝟎 Forecasts of 10 period Household debts 

 
 
Note that the forecasts in Figure 6 are based on the 95% confidence limits. Past values of the series 
(shown as circles) are in par with the forecasted values (in a solid line). This confirms the reliability of the 
model (𝐴𝑅𝐼𝑀𝐴  3, 1, 0  ) in forecasting household debt and its vigour in predictive ability. Both a trend of 
the data is captured and non-seasonal peaks are predicted by the plot. Forecasts were produced using the 
selected model for the next two years and the remaining three quarters of 2014. Extrapolated values 
reveal a wide confidence interval and somehow sluggishly rising trend. A two-period ahead forecast was 
yielded using historical data of 1994 first quarter to 2014 first quarter. These short-term period forecasts 
of household debt in SA are between 2014 second quarter to 2016first quarter and shows that about 75% 
or more of debts are expected in the next two years. These estimates are still high according to South 
African standards. In the short run, it is important for the authorities in SA to come up with policies that 
may be useful in addressing these high expected trends. Urgent attention needs to be paid to this problem 
and possible solutions must be sought sooner to try preventing another recession.𝐴𝑅𝐼𝑀𝐴  𝑝, 𝑑, 𝑞 models 
have more advantage when used in forecasting in that they simultaneously provide the results of the 
forecast based on the past and future values of the series as depicted by Figure 6. The results of the two 
series do not drift too far from each other explaining the rigidity of the model. The values of the original 
and forecasted data  were compared to further assess the robustness and validity of 
𝐴𝑅𝐼𝑀𝐴  3, 1, 0 model. The results are presented in Table 5. 
 
Table 5: Model performance 
Model MaxAPE MaxAE Ljung-Box 

statistic 
DF Sig. 

Original 1.244 0.051 14.638 15 0.478 
Forecasted 0.971 0.040 11.060 15 0.748 
 
It is important to note that the MaxAPE and the MaxAE for the model of forecasted data are less than 
those of the original data. MaxAPE represents the largest forecasted error expressed as a percentage. This 
measure is as being useful for imagining a worst-case scenario for the forecasts. Ljung-Box tests for these 
models are both greater than 0.05 with one for forecasted model even bigger. This proves that the 
residuals of the second model are random and heteroscedasticity. Given these results, 𝐴𝑅𝐼𝑀𝐴  3, 1, 0  is 
confirmed to be robust and valid in modelling and forecasting household debt for the selected period in 
SA.  
 
4. Conclusion 
 
In the main, the paper used Box-Jenkins methodology to estimate the model used for forecasting 
household debt in SA. A time series data collected for the first quarter of 1994 to the first quarter of 2014 
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from the SARB was used. Time series plot revealed that household debt are explained by an irregular and 
non-seasonal component. Owing to the non stationarity of the series, first differencing was applied to the 
series to induce stationarity. The ACFs and PACFs identified six models. These models were compared 
and 𝐴𝑅𝐼𝑀𝐴  3, 1, 0  was chosen according to standard error estimates and the information criteria. The 
model was subjected to diagnostic checks which confirmed its suitability to produce forecasts. The 
forecasts produced were above 75% with confidence bounds of 95%. The forecasted values from the 
proposed model are much more realistic and are a true reflection of economic reality in the country. To 
evaluate forecasting accuracy of this model, past and future values of the series were compared. The 
MaxAPE and MaxAE proved the robustness and accuracy of the proposed model. The paper therefore 
recommends a non-seasonal𝐴𝑅𝐼𝑀𝐴  3, 1, 0  be used by researchers, policy makers and decision makers 
of different countries to make forecasts of household debt. The South African authorities are also 
encouraged to use this model to produce further forecasts when making long term planning. It cannot be 
emphasised further that preliminary analysis of time series data is very important as it guards against 
choosing irrelevant model and also endeavors to reveal hidden characteristics of the series.The use of 
quarterly data is encouraged to help avoid violation of non-normality of residuals and autocorrelations. 
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