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Abstract: In this paper, we compare the finite sample performances of various bootstrap methods for diffusion 
processes. Though diffusion processes are widely used to analyze stocks, bonds, and many other financial 
derivatives, they are known to heavily suffer from size distortions of hypothesis tests. While there are many 
bootstrap methods applicable to diffusion models to reduce such size distortions, their finite sample performances 
are yet to be investigated. We perform a Monte Carlo simulation comparing the finite sample properties, and our 
results show that the strong Taylor approximation method produces the best performance, followed by the 
Hermite expansion method. 
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1. Introduction 
 
Markov processes play a central role in financial analyses, granted that prices efficiently reflect information in the 
market. Diffusion processes are continuous-time Markov processes that have a semi-martingale property, and they 
have been widely used to model stocks, bonds, and many other financial derivatives (Chan et al., 1992). However, 
diffusion models are known to heavily suffer from size distortions of hypothesis tests. While there are many 
bootstrap methods applicable to diffusion models to reduce such size distortions, their finite sample performances 
are yet to be investigated. Thus, we compare their performance by using Monte Carlo simulations.  
 
It is well known that bootstraps enhance finite sample performance in various statistical analyses, such as 
parameter value estimations and hypothesis testing. For example, the bootstrap can be used to correct biases in 
estimation as seen in Tang & Chen (2009). However, bootstrapping the diffusion processes is not straightforward 
because of the dependence structure residing in the time series data (Kreiss & Lahiri, 2012; Horowitz, 2003; Härdle 
et al., 2003; Pan & Politis, 2016a; Pan & Politis, 2016b). There are various methods for circumventing this problem. 
For example, when the parametric dependence structure of the diffusion model is well known and easy to 
construct, we can generate the bootstrap samples using the parametric bootstraps. Conversely, if the parametric 
structure of the model is unknown or difficult to construct, we may need to utilize nonparametric approaches. In 
this study, we consider various parametric and nonparametric bootstrap resampling methods in practice.  
 
Among the parametric approaches, the strong Taylor approximation is straightforward and easy to implement, so it 
is preferred by many researchers. Having been used for a long time, it is still one of the most widely implemented 
methods, and many extensions are still proposed, as seen in Gyöngy & Rásonyi (2011) and Mikulevičius & Zhang 
(2015). A relatively new approach utilizes the Hermite expansion suggested by Aït‐Sahalia (1999). Due to its sound 
theoretical background and good performance in estimation, parameter estimation using the Hermite expansion 
has gained popularity since its introduction. In this study, we utilize the Hermite expansion method to generate 
bootstrap samples. 
 
Nonparametric approaches utilize a nonparametrically estimated conditional distribution. The conditional 
distribution contains essential characteristics of the diffusion process; therefore, it plays an important role in 
various diffusion analyses, as seen in Chen et al. (2008) and Bhardwaj et al. (2008). Due to its versatility and 
robustness to misspecification, the nonparametric approach is also preferred by many researchers. As for the 
bootstrap resampling, Horowitz (2003) suggested using the Markov conditional bootstrap (MCB), in which random 
samples are generated from the non-parametrically estimated conditional distributions. These parametric and 
nonparametric approaches have their own strengths and weaknesses, and their finite sample performances in 
hypothesis testing are yet to be investigated.  
 
This paper compares the accuracy of the coverage probabilities of various bootstrap methods by utilizing Monte 
Carlo experiments. Overall, we find that the strong Taylor approximation method performs the best, followed by 
the Hermite expansion method. The nonparametric MCB shows relatively larger size distortions, but it still 
performs better than the first-order asymptotics. We conjecture that this is because the nonparametric methods 
involve many user-dependent factors, such as the choice of kernel function and bandwidth. However, as it clearly 
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outperforms the first-order asymptotics, it is worthwhile to consider the MCB when the nonparametric method is 
inevitable.  
 
In Section 2, we introduce various bootstrap resampling methods that generate samples either from the 
parametrically constructed or from nonparametrically constructed transition densities. Section 3 presents the 
results of a Monte Carlo simulation on the performance of the bootstrap methods. Section 4 presents concluding 
remarks. 
 
2. Various Bootstrap Methods for Diffusion Models 
 
In this section, we introduce various bootstrap resampling methods that can be applied to diffusion models. For the 
analysis, we consider a stationary diffusion process X whose stochastic differential equation (SDE) is given as the 
following:  

dXt = μ(Xt)dt + σ(Xt)dWt, 
where W is the standard Brownian motion.  
 
Since closed-form expressions of exact transition densities are not generally available, we first consider the strong 
Taylor approximation. The Euler and Milstein schemes are popular strong Taylor approximation methods. In 
addition to these, we also consider other more sophisticated methods, such as the Heun method and the order 1.5 
strong Taylor scheme. Furthermore, we also consider an approximation utilizing the Hermite expansion of the 
transition density, as suggested by Aït‐Sahalia (1999). Although it is one of the most popular methods used for 
parameter estimation, it is not very common for random sample generation. Lastly, we consider the MCB, a 
nonparametric bootstrap method proposed by Horowitz (2003). For the financial analysis using diffusion models, it 
is worthwhile to consider using nonparametric methods, since parametric diffusion models are often imprecisely 
specified for simplification. 
 
Exact Transition Density: In general, closed-form expressions of exact transition densities are not available 
except for very few diffusion processes. For stationary diffusions, only the following two models are known to have 
closed-form transition densities. 
 

• Vasicek model (Ornstein-Uhlenbeck process), attributed to Vasicek (1977). The SDE of the Vasicek model 
is given as  

dXt = κ(α − Xt)dt + σdWt 
for κ, σ ∈ R+ and α ∈ R. The conditional distribution of XΔ|X0 = x is the normal distribution, whose density 
function is  

p(y|x) = φ(y; m(Δ, x),v(Δ, x)) 
where φ is the density function of the normal distribution, whose conditional mean and variance are, 
respectively,  

                                   and 

                    
           

  
  

• The Cox-Ingersoll-Ross model (Feller’s square root process), attributed to Cox et al. (1985). The SDE is 
given as 

                            

for κ, α, σ ∈ R+ such that 2κα > σ2. In this case XΔ|X0 = x follows a noncentral χ2- distribution. The transition 

density is                    
 

 
 

   

                 ∈     where c=2κ/(σ2 (1-exp(-κΔ))), q=2κα/σ2 

– 1, u=cx exp(-κΔ), v=cy, and    is the modified Bessel function of order q. 

 
Strong Taylor Approximation: The use of a strong Taylor approximation can be considered for bootstrap 
sampling. Once we obtain the parameter estimates of the diffusion processes, we can generate a stochastic process 
from the strong Taylor approximation. In order to define the strong Taylor approximation, we first introduce the 
absolute error criterion E(|XT−Y(T)|), where Y is an approximation of X. Next, Yδ, a discrete-time approximated 
version of X on the time interval (τ)δ = {τn: n = 0, 1, ∙ ∙ ∙}, is considered strongly converging with the order of γ, if 
there exist C and δ0 such that E(|XT − Yδ(T )|) ≤ Cδγ for any δ ∈ (0, δ0). This definition can be naturally understood as 
a generalization of the deterministic version convergence criterion. The higher value of γ implies a sharper order of 
convergence. For more details, see Platen (1999). For more convergence results of the strong Taylor 
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approximation, a discrete-time approximation Yδ is strongly consistent if, for some nonnegative function c(δ) with 
limδ↓0 c(δ) = 0, we have 

     
     

     
 

  
    

       
          and  

 

  
      

     
         

     
     

       
              

for all n=0,1, …, where {        is a family of σ-algebras. The above two conditions roughly imply that Yδ 
converges to X in terms of the mean and variance. Thus, if an approximation is strongly consistent, then the two 
processes are pathwisely close to each other. Under some regularity conditions such as the Lipschitz condition and 
the linear growth bound condition, we formulate the following theorem.  
 
Theorem 1 (Kloeden & Platen, 1992). A strongly consistent equidistant time discrete approximation Yδ of a one-
dimensional autonomous Ito process X with Yδ(0) = X0 converges strongly to X.  
 
When we derive a discrete-time approximation in the strong convergence criterion, we refer to it as a strong Taylor 
approximation. As shown in the following, the convergence order is determined by how many terms we include in 
the expansion. 
 
The Euler–Maruyama scheme, also called the Euler scheme, is the simplest strong Taylor approximation, and in 
general, it attains the order of strong convergence γ = 0.5. The Euler scheme is given by 

     
     

      
        

    

where Δ is the length of the interval [τn, τn+1] and         
    

 is the increment of the standard Brownian 

motion W, on [τn, τn+1]. 
 
For the Euler scheme,      

     
       

        
   , we evaluate the right-hand side of the equation at the 

beginning of each interval τn < t < τn+1.  We can obtain a more accurate approximation when we include more 
information of the process from elsewhere, for example, when we use the average of the values at both τn and τn+1. 
In this case, we have 

     
     

  
 

 
      

         
         

    

 
This method is not feasible because the unknown quantity      

 appears on both. To address this issue, we use the 

Euler scheme to replace the      
term on the right-hand side. Accordingly, we obtain that 

     
    

      
    

     
    

 
 

 
      

         
         

     

or 

     
    

 
 

 
      

       
      

           
     

This approximation is called the improved Euler scheme or the Heun method. 
 
The Milstein scheme is an order 1.0 strong Taylor approximation method. To obtain the Milstein scheme 

     
    

        
 

 
             

where,        
 ,        

 , and          
 . We add the term 

 

 
             to the Euler scheme from the 

Ito-Taylor expansion. 
 
An even more accurate approximation can be obtained by including more stochastic Taylor expansion terms. These 
additional terms consist of stochastic integrals that carry more information about the process. These additional 
stochastic integral terms play an important role in improving the accuracy of the approximation since they 
represent the difference between the stochastic differential equations and the deterministic differential equations. 
To obtain a strong Taylor scheme of order γ = 1.5, we add more terms to the Milstein scheme utilizing the Ito 
lemma. Kloeden & Platen (1992) obtain the order 1.5 strong Taylor scheme as follows: 

     
    

        
 

 
                   

 

 
     

 

 
        (    

 

 
    ){      }+

 

 
      

    
 
  

 

 
            

where,        
 ,          

 ,          
 ,        

 ,          
 ,          

  and ΔZ is defined as 
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Hermite Expansion: The Hermite expansion method was first introduced by Aït‐Sahalia (1999). For this method, 
we apply the Lamperti transformation on the original diffusion process so that the transition density of the 
transformed model would become more suitable for the Hermite expansion. In the below brief overview of the 
transformations, let          be the domain of the process X. For the approximation, we first transform X into Y 

such that 

             
 

    

  

  

    

where x# is an arbitrary point in the domain DX. Note that as σ > 0, the transformation function f is strictly 
increasing and invertible. We denote           as the domain of Y where               and              . 

Then from Ito’s lemma, we obtain                  where 

      
         

         
 

 

 

  

  
          

 

Next, we transform Y into Z such that      
 

         where y0=f(x0). For the processes X, Y, and Z, Aït‐Sahalia 
(1999) derived their transition densities as follows: 

                              
                  

                

         
              

    
  

and 
                      

                
We approximate the transition density of Z as 

  
   

              

 

   

             

where φ is the standard normal density and 

         
 

  
        

   
      

 

  

    

Here H denotes the classical Hermite polynomials, which are given by 

            
  

   
             

 
Finally, we derive the approximated transition densities of Y and X as 

  
   

         
 

   
   

   
 

           and   
   

       
  

   
            

    
  

Then the following convergence theorem holds under the conditions assumed in Aït‐Sahalia (1999).  
 

Theorem 2 (Aït‐Sahalia, 1999). There exists   >0 such that for every Δ ∈ (0,   ) and        ∈   
 , p(x|x0) →J→∞ pX 

(x|x0).  
 
For the practical implementation of Theorem 1, we first compute p(J)(z|y0) for a given J. To obtain the coefficients 
ηj(Δ,  y0) for j = 0, 1, . . . , J,  we have 

         
 

  
       

 
                    

To calculate this expectation, we use the following lemma, which is obtained from the Taylor approximation.  
 
Lemma 1 (Aït‐Sahalia, 1999). Let g be a function such that g and all its derivatives have at most exponential growth. 

Then, for Δ∈(0,       y0∈R, there exists  δ ∈ [0, Δ] such that 

                      

 

   

      
  

  
                      

    

      
  

where A is the infinitesimal operator of the diffusion Y defined by                                    and Aj ∙ 
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  (y0) means A applied j times to the function y → g(y) and evaluated at y = y0.  
 
In practice, we need to consider how many terms should be included in this Taylor series. Aït‐Sahalia (1999) 
suggested that one should first choose the order J and then expand the expectation such that the approximation of 

the transition density   
   

       is at most of order Δ
J/2

. 
 
Markov Conditional Bootstrap: Horowitz (2003) proposed the MCB to conduct bootstrap sampling for Markov 
processes, and he sought to use a transition density to construct the dependency in time series data. We apply this 
idea by nonparametrically estimating the diffusion transition density. When it is applied to the diffusion model 
estimation, we expect in general that the nonparametric approaches will perform less accurately than the 
parametric approaches, since the nonparametric methods involve additional user-dependent factors. However, 
there are cases in which asymptotic expansion type approximations may not work well enough, so it is still 
worthwhile to check the performance of the nonparametric method. The MCB estimates the joint and marginal 
densities as follows: 

       
 

       
 
   

    

  

 

   

 
    

  

  

and 

     
 

       

   
    

  

 

   

   

where K(∙) is the kernel function and hn is the bandwidth. 
 
3. Monte Carlo Experiments 
 
This section presents the results of the Monte Carlo simulation, which compares the numerical performance of the 
introduced bootstrap methods. To examine how well the bootstraps perform, we used the Ornstein-Uhlenbeck 
(OU) process: 

dXt = κ(α − Xt)dt + σdWt. 

We used this process for our simulation as it is one of the most popularly used diffusion models in practice. 
Furthermore, its transition density function is known in closed form, and its sampling can be carried out without 
any cumbersome numerical approximation. We use values of κ = 1.0, α = 0.6, and σ = 0.1 and sample size n = 300. 
We perform 1000 Monte Carlo replications in an experiment. The critical values are obtained from 300 bootstrap 
iterations, and the coefficients are estimated with the generalized method of moments (GMM). Though applying the 
exact maximum likelihood estimation is possible for this OU process, we utilize the GMM estimation because the 
GMM estimation is widely used in practice, whereas the exact maximum likelihood estimation is available only for a 
few limited diffusion models. In the simulation, we examine the performance of two-tailed t-tests with a 
significance level of 0.1. 
 
GMM Moment Conditions and the Test Statistic: For the GMM estimation we discretize our diffusion model as 
follows: 

                Δ        
where E         and       

      following Brennan & Schwartz (1988), Dietrich-Campbell & Schwartz (1986), 
and Sanders & Unal (2001). We let           . Given                      Δ   the vector         is 
written as  

         

    

      

    
     

     
        

   

 
Denoting with θ0 the true but unknown value of θ, we have E[ft(X, θ0)] = 0. The GMM procedure estimates 
parameter values by finding the values that satisfy the sample version of the moment conditions, where E[ft(X, θ)] 

is replaced with          
 

 
         

   . Then the parameter estimates are given by the minimizer of the 

quadratic form 

        
 
                   

where WT (θ) is a positive-definite symmetric matrix. From the matrix differentiation, finding the minimum of JT (θ) 
is equivalent to solving,                     , where D(θ) is the Jacobian matrix of gT (X, θ) with respect to θ. 
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The choice of the weighing matrix WT is also important since the performance of the GMM estimator θn depends on 
how we define WT. Hansen (1982) showed that if we let WT (θ) = S−1(θ) where 

                 
 
      , 

then the resulting GMM estimator achieves the smallest asymptotic variance. Denoting S0(θ) as an estimator of S(θ), 
the asymptotic variance matrix of the GMM estimator is 

  
 

 
         

               

where D0(θ) is the Jacobian matrix at the estimated values.  
 
We denote the consistent estimator of   with  n; the (r, r) component of  n with ( n)rr,; and the r’th components of θ 
and θn with θr and θnr, respectively. Thus, the t-statistic for the null hypothesis           is              

       
 
   
   

  To obtain the bootstrap versions of tnr, we define                             using moment 

conditions such that               where    is the bootstrap expectation and    is a bootstrap sample. As in Hall & 
Horowitz (1996) and Andrews (2004), we apply the recentering technique to the bootstrap version since there is 

no θ such that              for an overidentified case. The bootstrap estimator of θ, denoted by    , is obtained by 

replacing    with     and X with      The bootstrap version of  n, denoted by   
 

, is obtained by replacing    with    , X 

with   , and    with     in the expression for  n. The bootstrap version of the t-statistic is                

        
 
   
   

 where      denotes the r’th component of    . 

 
Numerical Results: Table 1 reports the results of the Monte Carlo simulation, listing the differences in the 
coverage probabilities of the bootstrap tests for nominal 90% confidence intervals. For the comparison of the 
bootstrap performances, we only focus on the coverage probability of the drift term parameters κ and α, which are 
known to suffer from large size distortions. Since the Euler and Milstein schemes coincide with each other in the 
case of the OU process, the simulation of Milstein schemes is not conducted. When the transition density is 
estimated by a nonparametric method or by the Hermite expansion, it is impossible to generate bootstrap samples 
with explicit formulae. Therefore, sampling is executed with the accept–reject method.1 To evaluate the accuracy of 
each bootstrap method, the summation of the absolute values of differences between the nominal and empirical 
coverage probabilities in each bootstrap test is shown at the bottom of the table. 
 
As seen in Table 1, the bootstraps utilizing the Hermite expansions of orders 1 and 2 outperform the first-order 
asymptotic test. However, they do not outperform the Euler approximation, which is unexpected. We conjecture 
that the accept–reject method brought about some inefficiency in the process of bootstrap sampling. Moreover, the 
bootstrap method with the best performance is the one utilizing the order 1.5 strong Taylor approximation. The 
higher the order of strong Taylor approximation, the more accurately the empirical coverage probability from 
bootstrap is calculated. The nonparametric MCB shows relatively larger errors, as it inevitably involves more 
factors to adjust, but it at least performs better than first-order asymptotic test even for this simple OU model case. 
 
Table 1: Difference between the Actual and Nominal Coverage Probabilities (Actual − Nominal) 

         Asym.        Exact                Tayl. 1.5        Heun       Euler          Herm. 1       Herm. 2        MCB 
κ -0.0818 -0.0313 -0.0263 -0.0313 -0.0364 0.0448  0.0400  0.1000 

  -0.0465 -0.0010  0.0040   0.0040 -0.0010 0.0310 -0.0267 -0.0243 

Abs. sum      0.1283        0.0323        0.0303            0.0353       0.0374        0.0758    0.0667           0.1243 

 
4. Conclusion 
 
This paper compares the performance of various bootstrap methods that are applicable to diffusion models. Among 
the various bootstrap methods, those using the idea of a strong Taylor approximation provide the most precise 
results. The bootstrap using the Hermite expansion fails to perform well possibly because of sampling errors in 
accept—reject method. The nonparametric MCB shows relatively poor performance, but it still outperforms the 
first-order asymptotic test. Based on our results, we suggest using the strong Taylor approximation for 
bootstrapping diffusion processes. In addition, we also suggest the Hermite expansion method when the diffusion 

                                                
1 The, accept—reject method works as follows. Given a density function f, first we choose a density function g and a 
constant M such that f (x) ≤ Mg(x). Then we generates X ∼ g, U ∼ U[0,1].  Next we accept Y = X if U ≤ f (X)/Mg(X), and 
reject otherwise. Finally, we return to the first step. If we follow this method, it produces a variable Y distributed 
according to the density function f. 
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model is more complicated as we only consider a simple diffusion model here. Though the MCB produces rather an 
unsatisfactory result, we may also consider it when we are not very certain about the model specification, since it 
surely outperforms the first-order asymptotics. Furthermore, a future study would be needed to reduce the 
sampling error in accept—reject method, which would enhance the performance of the bootstraps using the 
Hermite expansion or the nonparametric transition density estimation. 
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