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Abstract: In this paper, we provide evidence that the five variables used in the study were nonlinear in 
nature, while finding a better Markov-switching model. The study used dailydata obtained from the 
Johannesburg Stock Exchange over the period from January 2010 to December 2012. An extension of Markov 
Switching with autoregressive model was used for empirical analysis. Prior to using this model, the series 
were tested for nonlinear unit root with modified Kapetanois-Shin-Snell nonlinear Augmented Dickey-Fuller 
(KSS-NADF) test which successfully provided positive results.Other preliminary tests selected the first lag as 
optimal and confirmed that stock prices may switch between two regimes. Further empirical findings proved 
that stock prices can be successfully modelled with Markov Switching Autoregressive model of order one. 
First National bank was found to have 99.64% longer stock price stability if adjustments regards 
tofinancialpolicies are made. Capitec Bank was the least favoured among the banks.  
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1. Introduction  
 
In recent years, stock markets data analyses have become very important object of academic research. In the 
course of establishing deeper understanding of the 2007-2008 financial crises, research findings reported 
that standard time series models have several shortages in precision and robustness. The conventional 
methods often employed by data analysts to capture the dynamics and patterns in the most financial time 
series based on the assumption of linearity, leading to failure by majority of models failing to address the 
fundamentals of most financial data. Having discovered the glitch, various researchers and financial 
practitioners have shifted their attention to the use of nonlinear prediction methods. These modelling 
techniques fulfil many other useful roles such as generating forecasts whilst capturing volatility and 
nonlinearity very well. Applications of such techniques in the field of finance have proven to reflect valid 
empirical and theoretical knowledge of how financial markets work.They also help in explaining changes in 
financial markets and the anticipation of any unexpected changes. Where linear methods fail to describe the 
dynamics of finance time series, nonlinear methods are the main alternatives.  
 
Literature highlights evidence of occasional sudden breaks in many financial and economic time series, 
especially stock market data, making it extremely difficult for accurate prediction. These changes have been 
attributed to several reasons including changes in economic conditions, investor expectations, relative 
performance of other stock markets, responses to shocks from exogenous geopolitical events or financial 
crises, or disruptions due to weather related catastrophes, just to mention a few. This is supported by 
Vasanthi et al. (2011) who reiterated that prediction of financial market could be a complex task since the 
distribution of such data often changes over a period of time. Consequently, determining more effective and 
efficient ways of predicting the movement of stock market prices are important.  The findings of this study 
could be useful to finance professionals who refer to forecasts when making financial plans. The five 
suggested banks and others may also use the findings when compiling report regards to their earnings 
expectations. Investors on the other hand need to be assured of their value for money as they invest their 
hard earned capital in stocks with the expectation of gaining from their investment through a positive payoff 
(Ababio, 2012). As a result, availability of knowledge about share price movement in the future serves the 
interest of financial professionals and investors. Through this knowledge, investor’s confidence may be 
boosted by way of consulting and investing.  
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The most basic reason for forecasting stock market price is financial gain. Any model found to be reliable in 
forecasting stock market prices would make the owner of the method very popular and wealthy. Hence, many 
individuals, including academics, researchers, investment professionals and investors are searching for a 
superior method which will offer high returns (Dase et al., 2011). According to Hemanth et al. (2012), the 
main objective of stock market forecasting is to determine the future price of a company stock or other 
financial instrument traded on a financial market exchange. The successful prediction of a stock's future price 
could help the buyer and seller to make good decisions. The investor may realise a significant profit by buying 
stock at its lowest price and sell when the price is at its highest level. This study explores the efficiency and 
robustness of a nonlinear Markov-Switching autoregressive (MS-AR) model in predicting closing stock prices 
of the five major Banks in South Africa. The model yielding the least error margin will be of much interest to 
financial professional and investors. There is death of literature on the application of the MS-AR model in 
stock prediction in the context of South Africa. As a result, this study contributes to literature in this area. The 
application of this method may also stimulate interest to other scholars who wish to analyse other financial 
data exhibiting nonlinearities. The MS-AR model is vouched for by a number of authors who have published 
in the areas of finance and economics in different countries as an efficient and good predictor when used in 
financial data. In the next section, literature reviewed justifies the applicability of MS-AR model in finances by 
different authors from different countries. The rest of the paper is organized as follows. Section 2 provides a 
summary review of literature, Section 3 description ofMS-AR model. In Section 34, the discussion of empirical 
results is provided and conclusions and recommendations are given in Section 4. 
 
2. Literature Review 
 
A number of studies applied MS-AR model in both financial and economic data analysis. Hamilton applied 
Markov Switching Models in 1989 to explain the specific features of macroeconomic and financial time 
series.Specifically, Turner et al. (1989), Cecchetti et al. (1990) and Schaller and van Norden (1997) use MSM 
to model stock market return while Gray (1996), Hamilton (1988) and Ang and Bekaert (2002) employed this 
techniques to explain the behaviour of interest rates. The first application of Markov Switching model in 
financial econometrics was done by pioneers Turner et al. (1989). The authorswere the first to apply MS-AR 
model to capture the regime shifts behaviour in stock market returns. The study applied the model of normal 
distribution to study the relationship between the market risk premium and variance of stock returns using 
monthly prices of the S & P 500. The findings revealed the usefulness of the MS-AR allowing the regime shifts 
to happen in mean and variances and fitting the data effectively compared to other specifications of Markov 
regime switching models. A follow-up study which applied this model by Chu et al. (1996) examined the 
relationship between stock market returns and stock market volatility. The study revealed a nonlinear and 
asymmetrical relationship between returns and volatility. The findings of the two studies provide more bases 
to conclude that MS-AR model is good in revealing the features in the data that other nonlinear models fail to 
reveal. 
 
Liu (2011) conducted a study similar to Turner et al. (1989) and Schaller and Norden (1997). The authors 
incorporated regressors in the state-dependent volatilities through a link function to Markov switching 
model. This incorporation was done to assess sources of persistence on state-dependent volatilities. The 
model effectively produced new evidence on the relationship between market volatility and expected returns. 
Specifically the authors were studying the effect of two important volatility determinants of both price range 
and trade volume, thus assessing their importance in terms of both explanatory power and predictability for 
return volatility. The findings revealed strong evidence of switching behaviour in the US stock market with 
equities switching between two states; low expected return and high volatility state. The study by Wasim and 
Bandi (2011) aimed at determining if there existsbull and bear in the Indian stock market. The Akaike, Hana-
Quinn and Schwartz information criteria were used to identify the model best fitting the data. Two-state MS-
AR (2) model was used to identify bull and bear market regimes. The predictions by the model showed that 
Indian stock market remain under a bull regime with very much higher probability than the bear regime. The 
findings further showed that bull regime was more than a month in both the markets and that bear phases 
occurred during all major global economic crises including recent US sub-prime (2007-2008) and European 
debt crisis (2010). 
 

http://en.wikipedia.org/wiki/Stock
http://en.wikipedia.org/wiki/Financial_instrument
http://en.wikipedia.org/w/index.php?title=Financial_exchange&action=edit&redlink=1
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Cruz and Mapa (2013) also contributed to the literature by developing an early warning system (EWS) for 
predicting inflation in the Philippines. The study used four two-regime 𝑀𝑆 − 𝐴𝑅(1) to 𝑀𝑆 − 𝐴𝑅(4) models. 
The Akaike information criterion used and various diagnostic tests were in favour of the𝑀𝑆 − 𝐴𝑅(2). The 
study concluded that Philippine inflation rate is better when modelled by a two-state𝑀𝑆 − 𝐴𝑅(2), with the 
estimated average inflation rate. The predictions further suggestedlower inflation rate targets for Bangkok 
Sentraling Philippines. 
 
Application to South African banking Stocks: This section provides a description for the data and ensures 
it is ready for application by addressing nonlinearity in unit root using the Kapetanois-Shin-Snell Nonlinear 
Augmented Dickey-Fuller Unit (KSS-NADF). The application of MS-AR models becomes effective on nonlinear 
unit root data.A review of the MS-AR model is also provided in this section.  
 
Data: The study employed the stock prices of South Africa collected daily for the period 2010-2012. A total of 
563 observations were obtained from http://www.jse.com. The banks that responded were ABSA Bank 
(ABSA), Capitec Bank (CAPB), First National Bank (FIRB), Nedbank (NEDB) and Standard Bank (STDB) and 
ccoincidentally, these five banks constitute the five largest banks listed on the JSE. These also happened to be 
the five major banks in the country. Figure 1 is a depiction of the closing stock price series. The purpose of 
this figure is to identify broad characteristics of the variables used in this study. 
 
Figure 1: Graphical Representation of the Five Closing Stock Prices 

 
A visual examination of the plot reveals different patterns. FIRB has the lowest stock prices and is estimated 
by an upward sloping trend. Stock prices of other banks are explained by irregular increasing patterns with 
ABSA and NEBD showing convergence at several stages. Given this movements by the stock prices, the data is 
not stationary at all levels. Further empirical analysis is continued by employing the nonlinear unit root test 
discussed in the next section.  
 
Preliminary tests: The Kapetanois-Shin-Snell (KSS) is used to test unit root in nonlinear time series. The KSS 
test is a modification of the Augmented Dickey-Fuller (ADF), based on the following nonlinear model 
specification (Kapetanios et al., 2003): 

   2
t t 1 t 1 t d tX X X [1 exp( X )]         ,

  (1) 

Which when parameterised yields: 

   2
t t 1 t 1 t d tX X X [1 exp( X )]           ,

  (2) 

Where 1   ,  ,   are parameters that must be estimated and t  is the residual term. The KSS test sets 

0   and the decay parameter, d 1 , so that the test is formally based on the following specification: 

   2
t t 1 t d tX X [1 exp( X )]        .

  (3) 

The KSS tests the null hypothesis of linear stationarity by setting 0   against the alternative that 0  . 

However, Katepenios et al. (2003) argue that it is impossible to directly test the null hypothesis since the 
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speed of reversion,  , is unknown. Using a first-order Taylor series approximation, Luukkonen et al. (1988) 

reformulated an estimable nonlinear specification for testing nonlinear stationarity in tX  as: 
3

t t 1 tX .X      .     (4) 

To account for the possibility of serial correlation in the error term, equation (4) is augmented with lags of 

the first-difference of tX  as: 

p
3

t t 1 j t j t

j 1

X .X . X 



         (5) 

Where is the coefficient used to test the presence of a unit root. From the nonlinear stationarity 
specification, the KSS-NADF unit root test is based on the t-statistic: 

      
NL

ˆ

ˆs.e.( )


 


   (6) 

wheres.e.( ) is the standard error of . The following hypotheses are tested: 
    

0H : 0   (Nonlinear nonstationarity)   

   Vs. 1H : 0  .  (Nonlinear stationarity) 

Three different asymptotic critical values are constructed with three different nonlinear model specifications 
- raw data, demeaned data, and de-trended data (Kapetanios et al., 2003). The following scenarios prevail: 
 If 

tX  has a zero mean, then the appropriate data to use is 
t tY X , the raw data. 

 If 
tX  has a non-zero mean and zero trend, then the appropriate data to use is 

t tY X  - X , the demeaned 

data, where X  is the mean of the data. 
 If 

tX  has a non-zero mean and non-zero trend, then the appropriate data to use is
t t 0 1Y X  - ( + t)   , the 

de-trended data, where 
0 1t   is the trendline obtained by regressing 

tX  on time point t=1, 2, 3,.., n 

with an intercept term. 
The KSS-NLADF test is sensitive to the choice of lag length, 𝑝. One prominent approach to select 𝑝 is use of 
general-to-specific method suggested by Hall (1994). This involves setting up an upper bound, pmax, suggested 
by Schwert (1989): 

 
1

4n
max 100

p intger 12. 
                             (7) 

Where n is the sample size, estimating the test regression with 𝑝 = 𝑝𝑚𝑎𝑥. This study will, however, appeal to 
the lag length of 8 as recommended by Liew et al. (2004). At the 1%, 5% or 10% level, if the last included lag 
is significant, it is retained as the optimal lag and used in the KSS-NLADF unit root test. However, if the last 
included lag is not significant, 𝑝 is reduced by one lag until last included lag is significant, and used as the 
optimal lag for the KSS-NLADF unit root test. The null hypothesis of the nonlinear unit root is rejected in 
favour of the alternative if the t-statistic is greater than the critical value as some α-level of significance. Table 
1 presents asymptotic critical values at the 1%, 5% and 10% levels. 
 
Table 1: Critical Values for KSS Nonlinear Unit Root Tests 

Significance Level Raw Data De-Meaned Data De-Trended Data 
1 
5 
10 

-2.82 
-2.22 
-1.92 

-3.48 
-2.93 
-2.66 

-3.93 
-3.40 
-3.13 

Source: Kapetanios et al. (2003) 
 
As a starting point for the KSS-NLADF, various regression analyses were conducted to examine whether the 
raw (zero-mean), de-meaned (single-mean) or de-trended data be used in conducting the KSS-NLADF test as 
discussed in Section 3.2. Preliminary results proved that the intercept term, c, and trend variable, t, to be 
significant at the 5% significance level  for all five variables, thus suggesting that de-trended variables be used 
in the KSS-NLADF unit root tests. Upon using the Schwartz Bayesian Criterion, an optimal lag one was 
selected and included in the analysis. The results for KSS-NLADF are summarised in Table 2. 
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Table 2: KSS Nonlinear Unit Root Test 
Bank Optimal Lag, P Estimate Std. Err t-Value p-Value KSS 
ABSA 1 -.000000020 7.487E-9 -2.68 0.0077 -2.67664 
CAPB 2 -.000000005 1.9813E-9 -2.70 0.0071 -2.70126 
FIRB 3 -.000000206 8.7758E-8 -2.35 0.0193 -2.34622 
NEDB 1 -.000000015 4.3729E-9 -3.32 0.0010 -3.32274 
STDB 0 -.000000060 1.2588E-8 -4.77 0.0001 -4.76565 

Critical values of the KSS-NLADF test with constant and trend at the 10%, 5% and 1% significant levels are -3.13, 
-3.40 and -3.93, respectively 
 
Referring to the results in Table 2 and the critical values in Table 1, the null hypothesis of nonlinear unit root 
is rejected for all the five banks at all levels of significance. The observedp-values for KSS test are all less than 
the conventional levels of significance. This means that the data exhibit asymmetric and nonlinear 
stationarity allowing the application of MS-AR model to be used.  
 
3. Model estimation 
 
The underlying principle of Markov Switching Models is to decompose nonlinear time series into a finite 
sequence of distinct stochastic processes, states or regimes, whereby the parameters are allowed to take on 
different values with regard to the state/regime prevailing at time t. Switches between states/regimes arise 

from the outcome of an unobservable regime variable, tS , which is assumed to evolve according to a Markov 

Chain Given the time series t{X : t 1,2,3,...,n} , the MS-AR model assumes the representation adopting 

Hamilton (1989): 
 

t t 1 t 1 t 1 2 t 2 t 2 p t p t p tX (S ) [X (S )] [X (S )] ... [X (S )]               ,  (8) 

 
Which, when re-parameterised yields: 

t 1 t 1 2 p t p tX c X ... X        ,     

   or 
p

t i t i t
i 1

X X 


    ,    (9) 

where 1 2 p, ,...,    represent the coefficients of the AR(p) process, 2
t ~ iid(0, )   and t(S )  are constants 

that are dependent on the states/regimes  tS  and represent 1  if the process is in state/ regime 1 ( tS 1 ),  

2  if the process in state/regime 2 ( tS 2 ), …, and R  if the process is in state/regime R ( tS R , the last 

state/regime). The change from one state to another is governed by the R-state first-order Markov Chain with 
transition probabilities, expressed as: 

ij t t 1p P(S j S i),   i, j 1,2   (10) 

where ijp  is the probability of moving from state i at time 𝑡 − 1 to state 𝑗 at time 𝑡. Using the fact that: 

    1i 2i Rip p ... p 1    ,    (11) 

the probability of state i being followed by state j (also known as the transition matrix) is given by: 
 

    

11 21 R1

12 22 R2

1R 2R RR

p p ... p

p p ... p

P .

.

p p ... p

 
 
 
 
 
 
 
 

   (12) 

 
In the current study, two states or regimes assumed that 𝑅 = 2 and the underlying 𝑀𝑆 − 𝐴𝑅 (𝑝) model is 
given by: 
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p
1 1,i t i 1,t ti 1

t

p
2 2,i t i 2,t ti 1

c X ,       if  S 1 

X    

c X ,     if  S 2





     


 


    





  (13) 

The transition matrix is, thus, given by: 

     11 21

12 22

p p
P

p p

 
  
 

    (14) 

so that 11 12p p 1   and 21 22p p 1  . P represents the probability of change in regime. For this two-regime 

MS-AR model, there are four transition probabilities given by: 

t t 1 11P(S 1|S 1) p    

t t 1 12 11P(S 2 |S 1) p 1 p      (15)
 

t t 1 22P(S 2 |S 2) p    

t t 1 21 22P(S 1|S 2) p 1 p      
 

The MS-AR allows one to make inferences about the value of the observed regime, tS , through the observed 

behaviour of tX . This inference takes the form of probabilities called ‘filtered probabilities’, which are 

estimated using a simple iterative algorithm that computes both the likelihood function recursively and

t tP(S i | )  , the filtered probability conditional on the set of observations, 
t t t 1 t 2 1 0(X ,X ,X ,...,X ,X )    

up to time t. If the whole data set is used, the probabilities obtained are called the ‘smoothed probabilities' 
which is estimated conditional on all the n available observations, 

n t t 1 t 2 1 0(X ,X ,X ,...,X ,X )   . An 

important result that can be derived from the transition matrix is the expected duration (or average duration) 
of regime i as well as the average duration of regime i. The expected duration of regime iis given by: 

t t ii ijE[D(S i)] D(S i) 1 (1 p ) 1 p      . (15) 

A small value of ijp  ( i j ) is an indication that the model tends to stay longer in state i while its reciprocal 

ij1 p  describes the expected duration of the process to stay in state i. 

 
4. Results 
 
In order to ascertain the possibility of using two-regime switching models for the variables, linearity 
likelihood ratio (LR) tests were conducted and the regime results reported in Table 3.  
 
Table 3:  Linearity LR Test of Two-Regime Switch 

Variable Chi-Square Test Statistic  P-value 
ABSA 53.794 0.0000 
CAPB 100.100 0.0000 
FIRB 21.788 0.0006 
NEDB 11.296 0.0796 
STDB 12.042 0.0610 

 
Findings from the linearity LR results suggest that the null hypothesis of no regime switching is rejected in 
favour of the two regimes. The p-value of the chi-square statistics for all the five variables are all significant at 
the 10%, 5% or 1% level. Therefore, theLR test results support a two-state regime for all the five variables. 
Similar results were reported by Ismail and Isa (2007), Psaradakis et al. (2009), Wasin and Bandi (2011) and 
Yarmohammadi et al. (2012).  The information gathered from preliminary analysis was consolidated to run 
the analysis using the MS-AR(1) model and the results are summarised in Table 4. As observed from these 

results, with ABSA, CAPB and FIRB, the variance of Regime 2 2
tσ (s 2)  is greater than the variance of 

Regime𝜎2 𝑠𝑡 − 1 .
.
 This suggests that Regime 2 is more volatile than Regime 1 regards to the three stocks. In 

other words, Regime 2 captures the volatility behaviours in ABSA, CAPB and FIRB in an unstable manner 
while Regime 1 captures the behaviours of the three stock prices in a stable manner. The opposite is true for 
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NEDB and STDB since the variances of Regime 1, 2
tσ (s 1)  is greater than the variance of Regime 2, 2

tσ (s 2) . It 

is also observed that, for ABSA, FIRB, NEDB and STDB, the estimated regime-dependent intercepts (expected 

daily increments in closing stock prices) are higher in Regime 1 than in Regime 2 (that is, tμ(s 1) > tμ(s 2)  

for ABSA, FIRB, NEDB and STDB) while the opposite holds in the case of CAPB. In other words, changes in 
ABSA, FIRB, NEDB and STDB closing stock prices increased in a stable state while opposite holds for CAPB.  
 

Table 4: Two-Regime MS-AR Modelling Results 
 ABSA CAPB FIRB NEDB STDB 

t(s 1)   

t(s 2)   
13749.6 
13642.6 

17853.9 
18761.8 

2276.56 
2194.16 

15390.1 
14488.6 

10507.0 
10457.0 

1 t(s 1)   

1 t(s 2)   
0.996758 
0.531652 

1.00108 
0.945820 

0.998810 
1.259510 

0.994343 
1.000960 

0.973702 
1.180030 

2
t(s 1)   

2
t(s 2)   

178.457 
241.037 

201.356 
331.188 

34.4960 
116.217 

241.296 
190.232 

137.350 
18.7274 

11p  
12p  
21p  
22p  

0.989355 
0.061359 
0.010645 
0.938640 

0.98621 
0.041621 
0.013793 
0.958380 

0.995928 
0.999979 
0.0040724 
0.0000212 

0.995980 
0.004151 
0.004019 
0.995850 

0.94730 
0.69051 
0.052702 
0.309490 

tE D(s 1)    

tE D(s 2)    

16.2975 
93.9408 

24.0263 
72.5005 

1.0000 
245.5554 

240.8884 
248.8181 

1.4482 
18.9746 

 

Furthermore, the probabilities of a closing stock price remaining in Regime 1, 11p , are smaller than the 

probability of a closing stock price staying in Regime 2, 22p , for all the five closing stock prices. In fact, the 

probabilities of a closing stock price staying in Regime 1 lie in the range of 0.947 to 0.996 with an expected 
duration, tE[D(s 1)] , of 1 to 241 days. Similarly, the probabilities of a stock price staying in Regime 2 lie in the 

range 0.000 to 0.958 with an expected duration, tE[D(s 2)] , of 19 to 249 days. In other words, closing stock 

prices can stay slightly longer in Regime 2 than in Regime 1. Appendix Adisplays the smoothed probability 
plots for the two-regime MS-AR models fitted to the five closing stock prices. Having a close look at these 
results, it appears that there is a correlation between the two regimes. This is because when the probability of 
Regime 1 is close to one, the probability of Regime 2 is close to zero, and vice versa. These finding suggests 
that the estimated MS-AR models perform very well in getting the direction of change of a series from Regime 
1 to Regime 2 or from Regime 2 to Regime 1. The findings of this study are accordance with those by 
Hamilton (1989), Turner et al. (1989), Chu et al. (1996) and Wasim and Bandi (2011). 
 
Model Evaluation: Just as in the case of linear models, evaluation of nonlinear models is necessary. The 
evaluation of nonlinear models is based on the properties of resulting residuals. Various tests for 
misspecification; including non-normality, stability and autocorrelation are conducted. 
 
Normality of residuals: Assessing the assumption of normality is required by most statistical procedures. 
Parametric statistical analysis assumes a certain distribution of the data, usually the normal distribution. If 
the assumption of normality is violated, interpretation and inference may not be reliable or valid. Therefore it 
is significant to test this assumption before forecasting with the estimated model. This study uses the 
histogram to assess residuals for normality. This method recommended by to Razali & Wah (2011) leads to 
similar conclusions provided by empirical tests. Histograms for the five closing stock prices are shown as 
Appendix D. A visual inspection of these figures proves that the five stocks are explained by a normal 
distribution. This also implies that the residuals of the MS-AR model residuals are identically and 
independently distributed and conform to normality assumption. 
 

Autocorrelation check: A simple test commonly used to detect autocorrelation of residuals at two time 
points, t and t-1, is the Durbin-Watson (DW) statistic. The residuals, t  assume the AR (1) representation: 
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t t 1 t. v    , where       2

t vv ~ iid(0, ) . (16) 

In the absence of autocorrelation in 0  . Hence, the hypotheses usually considered in the Durbin-Watson 

test are: 

0

1

H : 0

H : 0

 

   
The test statistic is: 

2n
t 2 t t 1

2n
t 1 t

( )
DW  



  




(17) 

Where t t t
ˆy y    and ty and tŷ are, respectively, the observed and predicted values of the response 

variable. Upper and lower critical values, dU and dL have been tabulated for different values of k (the number 
of explanatory variables) and n. Based on the estimated DW, the following decisions suffice: 
 

0H  is rejected if 
L, /2DW d   or if 

L, /2(4 DW) d   , 

 
0H  is not rejected if 

U, /2DW d   or if 
U, /2(4 DW) d   , 

Inconclusive if 
L, /2 U, /2d DW d    and if 

L, /2 U, /2d (4 DW) d    . 

The autocorrelation test results are summarised in Table 5. The results in Table 3 show the insignificant p-
values of the Durbin-Watson and Breusch-Godfrey test statistics. These observed probabilities are greater 
than the 1%, 5% and 1% significance levels, suggesting that the residuals are not auto correlated. This means 
that the MS-AR model residuals do not violate the serial correlation assumption. This finding is supported by 
the Portmanteau test results reported in Table 4 (that is, the p-values of the chi-square test statistics are 
greater than 1%, 5% or 10% levels). 
 

Table 5: Durbin-Watson and Breusch-Godfrey Tests of Residuals from MS-AR Models 
Autocorrelation Tests of Residuals 

Residual Variable 
Durbin-Watson Test Breusch-Godfrey Test 
Order DW Pr < DW Pr > DW Alternative LM Pr > LM 

ABSA 1 
2 
3 
4 
5 

2.2164 
2.0236 
1.9552 
1.9656 
1.9946 

0.9950 
0.6262 
0.3277 
0.3893 
0.5419 

0.0050 
0.3738 
0.6723 
0.6107 
0.4581 

AR(1) 
AR(2) 
AR(3) 
AR(4) 
AR(5) 

6.5863 
6.9170 
7.0898 
7.2620 
7.2658 

0.0103 
0.0315 
0.0691 
0.1227 
0.2016 

CAPB 1 
2 
3 
4 
5 

1.8644 
1.8338 
2.0462 
1.9734 
2.0071 

0.0537 
0.0267 
0.7364 
0.4251 
0.6000 

0.9463 
0.9733 
0.2636 
0.5749 
0.4000 

AR(1) 
AR(2) 
AR(3) 
AR(4) 
AR(5) 

2.4202 
5.7201 
6.4492 
6.4748 
6.4860 

0.1198 
0.0573 
0.0917 
0.1664 
0.2618 

FIRB 1 
2 
3 
4 
5 

2.0739 
2.2016 
2.1766 
1.9171 
1.9712 

0.8096 
0.9926 
0.9855 
0.1958 
0.4314 

0.1904 
0.0074 
0.0145 
0.8042 
0.5686 

AR(1) 
AR(2) 
AR(3) 
AR(4) 
AR(5) 

0.7684 
6.6655 
12.0590 
12.2991 
12.3304 

0.3807 
0.0357 
0.0072 
0.0153 
0.0305 

NEDB 1 
2 
3 
4 
5 

2.0216 
2.1727 
2.0847 
1.9458 
2.0223 

0.6012 
0.9819 
0.8620 
0.3028 
0.6679 

0.3988 
0.0181 
0.1380 
0.6972 
0.3321 

AR(1) 
AR(2) 
AR(3) 
AR(4) 
AR(5) 

3.7097 
5.7199 
5.7823 
5.8780 
7.2371 

0.0541 
0.0573 
0.1227 
0.2084 
0.2036 

STDB 1 
2 
3 
4 
5 

2.1703 
2.1492 
1.9396 
1.9712 
2.0337 

0.9785 
0.9652 
0.2636 
0.4151 
0.7152 

0.0215 
0.0348 
0.7364 
0.5849 
0.2848 

AR(1) 
AR(2) 
AR(3) 
AR(4) 
AR(5) 

4.0822 
7.9635 
8.0898 
8.1527 
8.2477 

0.0433 
0.0187 
0.0442 
0.0861 
0.1431 
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Model stability: One other way of assessing model robustness is by comparing the actual and predicted 
values of a series. Appendix C displays the overlay plots of the actual series and predicted series from the MS-
AR (1) model. The model appears to predict the actual series well, suggesting that the MS-AR model could 
performed relatively well in tracking the behaviours of the five closing stock prices. Both series are moving 
along the same trend suggesting that MS-AR model could provide efficient and robust forecasts of the closing 
five stock prices. Based on the smoothed probabilities of the various MS-AR (1) models, closing stock yields 
were classified into one of the two regimes – stable regime (Regime 1) and volatile regime (Regime 2) as 
reported in Table 6. The classification results show FIRB closing stock prices having the longest period of 
stability, i.e. 560 days or 99.64% stability, with an average duration of almost 186.67 days while NEDB 
closing stock price have the shortest period of stability (290 days or 51.60% stability) with an average 
duration of 290.00 days. 
 
Table 6: Regime Classification Based on Smoothed Probabilities 

Stock Price Regime 1 (Stable State) 
 

Regime 2 (Volatile State) 
 

ABSA Total Days: 485 (86.30%) 
Avg. Duration: 97.00 Days 

Total Days: 77 (13.70%) 
Avg. Duration: 19.25 Days 

CAPB Total Days: 420 (74.73%)           
Avg. Duration: 60.00 Days 

Total Days 142 (25.27%)           
Avg. Duration: 23.67 Days 

FIRB Total Days: 560 (99.64%)  
Avg. Duration: 186.67 Days 

Total Days: 2 (0.36%) 
Avg. Duration: 1.00 Day 

NEDB Total Days: 290 (51.60%)           
Avg. Duration: 290.00 Days 

 
Total Days: 272 (48.40%)           
Avg. Duration: 136.00 Days 

STDB Total Days: 543 (96.62%) 
Avg. Duration: 45.25 Days 

  Total Days: 19 (3.38%) 
Avg. Duration: 1.73 Days 

 
5. Conclusion  
 
The study modelled the daily closing stock price series of five variablesin South Africa. Data was obtained 
from the Johannesburg stock exchange covering the period 2010 to 2012. Prior to application of the MA-AR 
model, the data used was prepared by checking nonlinearity in unit root using the KSS-NLADF test. This is a 
basic assumption for using the suggested model. The results from this test confirmed that the five stock prices 
are indeed nonlinear and the stationarity condition was also captured. This implies that the South African 
stock prices are no different from those of other countries as reported in literature. The data does conform to 
time series properties and is suitable for application of nonlinear models. The suggested MS-AR model was 
used to provide results in the primary analysis. The SBC was used as a guiding criterion to select an optimal 
used in building the model. The analysis also suggested an MS-AR model switching between two regimes. The 
daily stock prices of the three banks ABSA, Capitec and First National banks proved to be more volatile 
compared to those of Standard bank and Nedbank. The findings further revealed that the expected daily 
increment in daily stock prices for ABSA, Nedbank, Standard and First National banks are stable and higher in 
Regime 1 than in Regime 2 overtime. This could also mean good returns for clients using these banks. The 
results rule out Capitec Bank as providing value for money in terms of investment. 
 
However, classification results proved FIRB closing stock prices as having the longest period of about 99.64% 
stability, i.e. a total of about 560 days in average of 187 days. Standard bank is the second revealing about 
96.62% running over 543 days on an average of 45 days. Nedbank was identified as having the lowest 
stability of about 51.6% over 290 days. Further analysis proved that the MS-AR (1) is a best modeller of 
closing stock prices in South Africa and that the model can be used to generate forecasts when planning for 
future. Based on these conclusions, the study makes the following recommendations: 
 Since MS-AR (1) model proved to be effective in capturing regime shifts behaviour in stock market 

returns, asymmetrical relationships between returns, nonlinear unit root and volatility, analysts of stock 
markets from other countries may use this model in their studies.  
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 Further studies may apply Markov Switching model with extension of moving averages (MA) and 
autoregressive moving averages (ARMA). Just like the autoregressive (AR) model, the MA and ARMA are 
Box-Jenkins univariate processes built for stationary and linear time series. Their integration of AR 
model in Markov Switching provided robust model which may be used for further analyses. 

 For policy purposes, financial analysts at the five banks may refer to the findings of this study when 
revising their policies. Closing stock prices have proven to be volatile for ABSA, Capitec and First 
National banks and as a result policies to address such instability have to be formulated. Provided 
adjustments are made to stock prices, there are 99.64% chances that First National Bank prices will be 
stable for 560 days. ABSA and Capitec banks may experience improved 86.3% and 74.7% stability in 
prices for 485 and 420 days respectively. This provides guarantee for investors and/or clients of these 
banks that they will enjoy value for their money. Some banks may however lose their clients to others on 
the process. 
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Appendix A 
 
Smoothed Probabilities of Regime 1 and Regime 2 
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Appendix B 
 
Schwartz Bayesian Criteria (SBC) From Two-Regime MS-AR Model Identification 

AR Lag, p ABSA CAPB FIRB NEDB STDB 
1 
2 
3 
4 
5 

13.46487 
13.47251 
13.59242 
13.61415 
13.63616 

13.88768 
13.91295 
13.93030 
13.95129 
19.97345 

10.03544 
10.07151 
10.07839 
10.15116 
10.17336 

13.61097 
13.70889 
13.66788 
13.76884 
13.79278 

12.73145 
12.75810 
12.73734 
12.80347 
12.82227 
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Appendix C 
 
Overlay Plots of Actual and Estimated MS-AR Models of Five Banks 
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APPENDIX D 
Residual Diagnostics from Estimated MS-AR Models 

  

  

 
 
 


